IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v92y2024ics0301420724003817.html
   My bibliography  Save this article

Enhancing the exploitation of natural resources for green energy: An application of LSTM-based meta-model for aluminum prices forecasting

Author

Listed:
  • Esangbedo, Moses Olabhele
  • Taiwo, Blessing Olamide
  • Abbas, Hawraa H.
  • Hosseini, Shahab
  • Sazid, Mohammed
  • Fissha, Yewuhalashet

Abstract

Efficient resource allocation for electric car production can be achieved by anticipating aluminum future pricing. For the electric car sector to maintain a steady supply chain, efficient production, and long-term growth, accurate forecasts are essential for policymakers to plan resource policies. The accuracy of ensemble learning models in predicting Aluminum prices was analyzed using Gene Expression programming and long short-term memory (LSTM) method. The analysis was based on monthly frequency spot settlement price data of Aluminum, copper, silver, and crude oil prices, as well as currency inflation rates of USA, China, and Peru. The study period spanned from January 1, 1994 to December 31, 2022, and also included the gross domestic product (GDP) of USA, China, and other metal minerals. Initially, we assess the level of multicollinearity between each chosen input parameter and Aluminum price volatility using Variance inflation factor-based multicollinearity. The primary innovation of this study lies in the creation of a highly precise model that utilizes the LSTM algorithm to estimate monthly Aluminum prices. This model serves as a revolutionary forecasting method. An extensive evaluation of various ensemble learning models reveals that XGBoost is the optimal model for accurately forecasting monthly Aluminum prices. The LSTM-based recurrent neural network model exhibited the lowest error, with a Mean Relative Error (MRE) ranging from 0.001 to 0.008, RMSE ranging from 54.527 to 136.044, and R2 ranging from 0.95 to 0.983. The findings demonstrated that the LSTM-based super learner models had superior performance compared to the CatBoost, LightBoost, Random Forest, XGBoost, and AdaBoost models, as evidenced by higher values of the determination coefficient (R2), value account for (VAF), and other 10 error analysis evaluators. Therefore, the utilization of an LSTM-based super learner model can serve as a dependable approach for forecasting future monthly Aluminum prices. In addition, this study introduces a logical mathematical model utilizing gene expression programming (GEP) to anticipate future Aluminum prices, which can be utilized by other researchers. Thus, we conclude that both the GEP and ensemble learning models, particularly the LSTM-based Super learner model, are appropriate for precise metal price predictions, which can benefit policymakers and assist in resource policy planning.

Suggested Citation

  • Esangbedo, Moses Olabhele & Taiwo, Blessing Olamide & Abbas, Hawraa H. & Hosseini, Shahab & Sazid, Mohammed & Fissha, Yewuhalashet, 2024. "Enhancing the exploitation of natural resources for green energy: An application of LSTM-based meta-model for aluminum prices forecasting," Resources Policy, Elsevier, vol. 92(C).
  • Handle: RePEc:eee:jrpoli:v:92:y:2024:i:c:s0301420724003817
    DOI: 10.1016/j.resourpol.2024.105014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420724003817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2024.105014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:92:y:2024:i:c:s0301420724003817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.