IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v66y2018icp235-247.html
   My bibliography  Save this article

Measure dynamic individual spatial-temporal accessibility by public transit: Integrating time-table and passenger departure time

Author

Listed:
  • Cheng, Shaowu
  • Xie, Bing
  • Bie, Yiming
  • Zhang, Yaping
  • Zhang, Shen

Abstract

The spatial–temporal accessibility of a transport system assesses the spatial–temporal constraints faced by individuals based on their fixed activities and the ability of the transport system to facilitate trading time for space in movement. Previous studies either measured the individual spatial–temporal accessibility of a general transport network or measured the cumulative-opportunity accessibility by public transit through an exclusive computation of the bottom of the full network time prism. By contrast, the current study measures the individual spatial–temporal accessibility by public transit by integrating timetable and passenger departure time and computing the full network time prism. A public transit network is modelled as a time-dependent weighted directed graph, wherein every single directed arc is associated with a time-dependent travel time to represent the linkage between two adjacent stops on a transit route. The time-dependent travel time assigned to arcs is determined according to timetables, which is particularly assigned to infinity when transit service is unavailable between two stops. A modified network potential path area (N-PPA) algorithm based on the time-dependent weighted directed graph is employed to produce a potential path area for the activity participation of an individual by public transit. The proposed methodology is applied as a case study to measure individual spatial–temporal accessibility using the Salt Lake City TRAX system. Results indicate that the outcome of the proposed methodology is sensitive to departure time of passengers. The results of this study provide suggestions on potential improvement of bus/rail line layout and timetables and may aid in trip planning of passengers.

Suggested Citation

  • Cheng, Shaowu & Xie, Bing & Bie, Yiming & Zhang, Yaping & Zhang, Shen, 2018. "Measure dynamic individual spatial-temporal accessibility by public transit: Integrating time-table and passenger departure time," Journal of Transport Geography, Elsevier, vol. 66(C), pages 235-247.
  • Handle: RePEc:eee:jotrge:v:66:y:2018:i:c:p:235-247
    DOI: 10.1016/j.jtrangeo.2017.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317302235
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    2. G H Pirie, 1979. "Measuring Accessibility: A Review and Proposal," Environment and Planning A, , vol. 11(3), pages 299-312, March.
    3. Kondo, Katsunao & Kitamura, Ryuichi, 1987. "Time-space constraints and the formation of trip chains," Regional Science and Urban Economics, Elsevier, vol. 17(1), pages 49-65, February.
    4. Tijs Neutens & Tim Schwanen & Frank Witlox & Philippe De Maeyer, 2010. "Equity of Urban Service Delivery: A Comparison of Different Accessibility Measures," Environment and Planning A, , vol. 42(7), pages 1613-1635, July.
    5. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    6. Xu, Wangtu (Ato) & Li, Yongling & Wang, Hui, 2016. "Transit accessibility for commuters considering the demand elasticities of distance and transfer," Journal of Transport Geography, Elsevier, vol. 56(C), pages 138-156.
    7. Nishii, Kazuo & Kondo, Katsunao, 1992. "Trip linkages of urban railway commuters under time-space constraints: Some empirical observations," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 33-44, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    2. Wang, Yanxia & Li, Yisong & Huang, Yixiao & Gong, Daqing, 2023. "Analyzing the impacts of logistics suburbanization on logistics service accessibility: Accessibility modeling approach for urban freight," Transport Policy, Elsevier, vol. 138(C), pages 25-44.
    3. Jaller, Miguel & Qian, Xiaodong & Joby, Raina & Xiao, Runhua Ivan, 2023. "Optimizing Bikeshare Service to Connect Affordable Housing Units with Transit Service," Institute of Transportation Studies, Working Paper Series qt9mp4g0xz, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    2. Jingming Liu & Xianhui Hou & Chuyu Xia & Xiang Kang & Yujun Zhou, 2021. "Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data," Land, MDPI, vol. 10(6), pages 1-20, May.
    3. Recker, W. W. & Chen, C. & McNally, M. G., 2000. "Measuring the impact of efficient household travel decisions on potential travel time savings and accessibility gains," University of California Transportation Center, Working Papers qt1qq2t12b, University of California Transportation Center.
    4. Yoon, Seo Youn & Ravulaparthy, Srinath K. & Goulias, Konstadinos G., 2014. "Dynamic diurnal social taxonomy of urban environments using data from a geocoded time use activity-travel diary and point-based business establishment inventory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 3-17.
    5. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    6. Krygsman, Stephan & Arentze, Theo & Timmermans, Harry, 2007. "Capturing tour mode and activity choice interdependencies: A co-evolutionary logit modelling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 913-933, December.
    7. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    8. Neutens, Tijs & Delafontaine, Matthias & Scott, Darren M. & De Maeyer, Philippe, 2012. "An analysis of day-to-day variations in individual space–time accessibility," Journal of Transport Geography, Elsevier, vol. 23(C), pages 81-91.
    9. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    10. Kim, Junghwan & Lee, Bumsoo, 2019. "More than travel time: New accessibility index capturing the connectivity of transit services," Journal of Transport Geography, Elsevier, vol. 78(C), pages 8-18.
    11. Cascetta, Ennio & Cartenì, Armando & Montanino, Marcello, 2016. "A behavioral model of accessibility based on the number of available opportunities," Journal of Transport Geography, Elsevier, vol. 51(C), pages 45-58.
    12. Jairo Ortega & János Tóth & Tamás Péter, 2021. "A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    13. Barajas, Jesus M. & Brown, Anne, 2021. "Not minding the gap: Does ride-hailing serve transit deserts?," Journal of Transport Geography, Elsevier, vol. 90(C).
    14. Recker, W. W. & Chen, C. & McNally, M. G., 2001. "Measuring the impact of efficient household travel decisions on potential travel time savings and accessibility gains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 339-369, May.
    15. Shixiong Jiang & Wei Guan & Liu Yang & Wenyi Zhang, 2020. "Feeder Bus Accessibility Modeling and Evaluation," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    16. Jae Hyun Lee & Adam W. Davis & Seo Youn Yoon & Konstadinos G. Goulias, 2016. "Activity space estimation with longitudinal observations of social media data," Transportation, Springer, vol. 43(6), pages 955-977, November.
    17. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    18. Tim Schwanen & Martin Dijst, 2003. "Time windows in workers' activity patterns: Empirical evidence from the Netherlands," Transportation, Springer, vol. 30(3), pages 261-283, August.
    19. Recker, W. W. & Chen, C. & McNally, M. G., 2000. "Measuring the impact of efficient household travel decisions on potential travel time savings and accessibility gains," University of California Transportation Center, Working Papers qt3kc5j7dc, University of California Transportation Center.
    20. Kim, Hyun & Lee, Keumsook & Park, Jong Soo & Song, Yena, 2018. "Transit network expansion and accessibility implications: A case study of Gwangju metropolitan area, South Korea," Research in Transportation Economics, Elsevier, vol. 69(C), pages 544-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:66:y:2018:i:c:p:235-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.