IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p4064-d530885.html
   My bibliography  Save this article

A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System

Author

Listed:
  • Jairo Ortega

    (Department of Transport Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, 1111 Budapest, Hungary)

  • János Tóth

    (Department of Transport Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, 1111 Budapest, Hungary)

  • Tamás Péter

    (Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, 1111 Budapest, Hungary)

Abstract

A Park and Ride (P&R) system is an intermodal point where private vehicle users transfer to public transport to make a combined trip. Several researchers have measured the static accessibility of the P&R system. However, studying dynamic accessibility leads to a comprehensive model consisting of a series of elements and steps that allow for travel time analysis in various traffic conditions. Therefore, the purpose of this article is to develop an integrated model that provides a set of procedures which determine the travel origin points of the P&R system, calculate the trips in different traffic conditions (in this article, the results are shown in three scenarios: no traffic (NT), low traffic (LT), and heavy traffic (HT)), and include a hot spot analysis and correlation in order to finally be able to display the dynamic accessibility using geospatial software. The result shows that the accessibility of the P&R system varies depending on the traffic volume and the variation of the accessibility in the different areas that conform to the urban environment. In conclusion, the integrated model helps users decide on the best time to travel to the P&R system, allows transport planners to develop strategies to make the system more functional, and gives an excellent opportunity to develop a travel information system.

Suggested Citation

  • Jairo Ortega & János Tóth & Tamás Péter, 2021. "A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4064-:d:530885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/4064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/4064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Bo & Wang, David Z.W., 2014. "Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters – A linear complementarity system approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 58-81.
    2. Liu, Tian-Liang & Huang, Hai-Jun & Yang, Hai & Zhang, Xiaoning, 2009. "Continuum modeling of park-and-ride services in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 692-707, July.
    3. Li, Qingquan & Zhang, Tong & Wang, Handong & Zeng, Zhe, 2011. "Dynamic accessibility mapping using floating car data: a network-constrained density estimation approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 379-393.
    4. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    5. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    6. Martínez Sánchez-Mateos, Héctor S. & Givoni, Moshe, 2012. "The accessibility impact of a new High-Speed Rail line in the UK – a preliminary analysis of winners and losers," Journal of Transport Geography, Elsevier, vol. 25(C), pages 105-114.
    7. Parkhurst, Graham, 1995. "Park and ride: Could it lead to an increase in car traffic?," Transport Policy, Elsevier, vol. 2(1), pages 15-23, January.
    8. Bimpou, Konstantina & Ferguson, Neil S., 2020. "Dynamic accessibility: Incorporating day-to-day travel time reliability into accessibility measurement," Journal of Transport Geography, Elsevier, vol. 89(C).
    9. Jin Han Park & Dong Kun Lee & Chan Park & Ho Gul Kim & Tae Yong Jung & Songyi Kim, 2017. "Park Accessibility Impacts Housing Prices in Seoul," Sustainability, MDPI, vol. 9(2), pages 1-14, January.
    10. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    11. Wang, Judith Y. T. & Yang, Hai & Lindsey, Robin, 2004. "Locating and pricing park-and-ride facilities in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 709-731, September.
    12. García-Albertos, Pedro & Picornell, Miguel & Salas-Olmedo, María Henar & Gutiérrez, Javier, 2019. "Exploring the potential of mobile phone records and online route planners for dynamic accessibility analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 294-307.
    13. Zhiyuan Liu & Qiang Meng, 2014. "Bus-based park-and-ride system: a stochastic model on multimodal network with congestion pricing schemes," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(5), pages 994-1006, May.
    14. Lin, Ting (Grace) & Xia, Jianhong (Cecilia) & Robinson, Todd P. & Goulias, Konstadinos G. & Church, Richard L. & Olaru, Doina & Tapin, John & Han, Renlong, 2014. "Spatial analysis of access to and accessibility surrounding train stations: a case study of accessibility for the elderly in Perth, Western Australia," Journal of Transport Geography, Elsevier, vol. 39(C), pages 111-120.
    15. Zhiyuan Huang & Ruihua Xu & Wei (David) Fan & Feng Zhou & Wei Liu, 2019. "Service-Oriented Load Balancing Approach to Alleviating Peak-Hour Congestion in a Metro Network Based on Multi-Path Accessibility," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    16. Xia, Nan & Cheng, Liang & Chen, Song & Wei, XiaoYan & Zong, WenWen & Li, ManChun, 2018. "Accessibility based on Gravity-Radiation model and Google Maps API: A case study in Australia," Journal of Transport Geography, Elsevier, vol. 72(C), pages 178-190.
    17. Thomas Straatemeier & Luca Bertolini, 2020. "How can planning for accessibility lead to more integrated transport and land-use strategies? Two examples from the Netherlands," European Planning Studies, Taylor & Francis Journals, vol. 28(9), pages 1713-1734, September.
    18. Shixiong Jiang & Wei Guan & Zhengbing He & Liu Yang, 2018. "Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    19. Itzhak Benenson & Karel Martens & Yodan Rofé & Ariela Kwartler, 2011. "Public transport versus private car GIS-based estimation of accessibility applied to the Tel Aviv metropolitan area," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 499-515, December.
    20. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    21. Duncan, Michael & Christensen, Robert K., 2013. "An analysis of park-and-ride provision at light rail stations across the US," Transport Policy, Elsevier, vol. 25(C), pages 148-157.
    22. Joana Cavadas & António Pais Antunes, 2019. "An optimization model for integrated transit-parking policy planning," Transportation, Springer, vol. 46(5), pages 1867-1891, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qigang Zhu & Yifan Liu & Ming Liu & Shuaishuai Zhang & Guangyang Chen & Hao Meng, 2021. "Intelligent Planning and Research on Urban Traffic Congestion," Future Internet, MDPI, vol. 13(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    2. Jairo Ortega & János Tóth & Tamás Péter & Sarbast Moslem, 2020. "An Integrated Model of Park-And-Ride Facilities for Sustainable Urban Mobility," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    3. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    4. Wang, Shuaian & Qu, Xiaobo, 2017. "Station choice for Australian commuter rail lines: Equilibrium and optimal fare design," European Journal of Operational Research, Elsevier, vol. 258(1), pages 144-154.
    5. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    6. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    7. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.
    8. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    9. Zhao, Yun & Yu, Hongbo, 2018. "A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route," Journal of Transport Geography, Elsevier, vol. 72(C), pages 13-22.
    10. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    11. Dong, Tao & Jia, Ning & Ma, Shoufeng & Xu, Shu-Xian & Ping Ong, Ghim & Liu, Peng & Huang, Hai-Jun, 2022. "Impacts of intercity commuting on travel characteristics and urban performances in a two-city system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    12. Gao, Ge & Sun, Huijun & Wu, Jianjun & Liu, Xinmin & Chen, Weiya, 2018. "Park-and-ride service design under a price-based tradable credits scheme in a linear monocentric city," Transport Policy, Elsevier, vol. 68(C), pages 1-12.
    13. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    14. Wenwei Zhang & Hui Zhao, 2021. "Modal choice analysis for a linear monocentric city with battery electric vehicles and park-charge-ride services," Transportation, Springer, vol. 48(4), pages 1895-1929, August.
    15. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    16. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    17. Chia, Jason & Lee, Jinwoo (Brian), 2020. "Extending public transit accessibility models to recognise transfer location," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    19. Mohammed Obaid & Arpad Torok & Jairo Ortega, 2021. "A Comprehensive Emissions Model Combining Autonomous Vehicles with Park and Ride and Electric Vehicle Transportation Policies," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    20. Xingjian Liu, 2020. "Assessing airport ground access by public transport in Chinese cities," Urban Studies, Urban Studies Journal Limited, vol. 57(2), pages 267-285, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:4064-:d:530885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.