IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v37y2009i2p312-330.html
   My bibliography  Save this article

Using expected values to simplify decision making under uncertainty

Author

Listed:
  • Durbach, Ian N.
  • Stewart, Theodor J.

Abstract

A simulation study examines the impact of a simplification strategy that replaces distributional attribute evaluations with their expected values and uses those expectations in an additive value model. Several alternate simplified forms and approximation approaches are investigated, with results showing that in general the simplified models are able to provide acceptable performance that is fairly robust to a variety of internal and external environmental changes, including changes to the distributional forms of the attribute evaluations, errors in the assessment of the expected values, and problem size. Certain of the simplified models are shown to be highly sensitive to the form of the underlying preference functions, and in particular to extreme non-linearity in these preferences.

Suggested Citation

  • Durbach, Ian N. & Stewart, Theodor J., 2009. "Using expected values to simplify decision making under uncertainty," Omega, Elsevier, vol. 37(2), pages 312-330, April.
  • Handle: RePEc:eee:jomega:v:37:y:2009:i:2:p:312-330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(07)00020-5
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Theodor J. Stewart, 1993. "Use of Piecewise Linear Value Functions in Interactive Multicriteria Decision Support: A Monte Carlo Study," Management Science, INFORMS, vol. 39(11), pages 1369-1381, November.
    3. Canbolat, Yavuz Burak & Chelst, Kenneth & Garg, Nitin, 2007. "Combining decision tree and MAUT for selecting a country for a global manufacturing facility," Omega, Elsevier, vol. 35(3), pages 312-325, June.
    4. Donald L. Keefer, 1994. "Certainty Equivalents for Three-Point Discrete-Distribution Approximations," Management Science, INFORMS, vol. 40(6), pages 760-773, June.
    5. Donald L. Keefer & Samuel E. Bodily, 1983. "Three-Point Approximations for Continuous Random Variables," Management Science, INFORMS, vol. 29(5), pages 595-609, May.
    6. Islei, Gerd & Lockett, Geoff & Naudé, Peter, 1999. "Judgemental modelling as an aid to scenario planning and analysis," Omega, Elsevier, vol. 27(1), pages 61-73, February.
    7. Butler, John & Jia, Jianmin & Dyer, James, 1997. "Simulation techniques for the sensitivity analysis of multi-criteria decision models," European Journal of Operational Research, Elsevier, vol. 103(3), pages 531-546, December.
    8. Brenner, Lyle A. & Koehler, Derek J. & Liberman, Varda & Tversky, Amos, 1996. "Overconfidence in Probability and Frequency Judgments: A Critical Examination," Organizational Behavior and Human Decision Processes, Elsevier, vol. 65(3), pages 212-219, March.
    9. Craig W. Kirkwood, 1992. "Estimating the Impact of Uncertainty on a Deterministic Multiattribute Evaluation," Management Science, INFORMS, vol. 38(6), pages 819-826, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.
    2. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    3. Morais, Danielle C. & de Almeida, Adiel Teixeira, 2012. "Group decision making on water resources based on analysis of individual rankings," Omega, Elsevier, vol. 40(1), pages 42-52, January.
    4. Mustajoki, Jyri, 2012. "Effects of imprecise weighting in hierarchical preference programming," European Journal of Operational Research, Elsevier, vol. 218(1), pages 193-201.
    5. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    6. Stewart, Theodor J. & French, Simon & Rios, Jesus, 2013. "Integrating multicriteria decision analysis and scenario planning—Review and extension," Omega, Elsevier, vol. 41(4), pages 679-688.
    7. Durbach, Ian N. & Calder, Jon M., 2016. "Modelling uncertainty in stochastic multicriteria acceptability analysis," Omega, Elsevier, vol. 64(C), pages 13-23.
    8. Durbach, Ian N. & Stewart, Theodor J., 2011. "An experimental study of the effect of uncertainty representation on decision making," European Journal of Operational Research, Elsevier, vol. 214(2), pages 380-392, October.
    9. Vanhoucke, Mario, 2010. "Using activity sensitivity and network topology information to monitor project time performance," Omega, Elsevier, vol. 38(5), pages 359-370, October.
    10. Scholten, Lisa & Schuwirth, Nele & Reichert, Peter & Lienert, Judit, 2015. "Tackling uncertainty in multi-criteria decision analysis – An application to water supply infrastructure planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 243-260.
    11. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
    12. Durbach, Ian N. & Stewart, Theodor J., 2012. "A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis," Omega, Elsevier, vol. 40(4), pages 456-464.
    13. Vanhoucke, Mario, 2011. "On the dynamic use of project performance and schedule risk information during projecttracking," Omega, Elsevier, vol. 39(4), pages 416-426, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:37:y:2009:i:2:p:312-330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.