IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i7p1525-1550.html
   My bibliography  Save this article

Robust Gaussian graphical modeling

Author

Listed:
  • Miyamura, Masashi
  • Kano, Yutaka

Abstract

A new Gaussian graphical modeling that is robustified against possible outliers is proposed. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its likelihood. Test statistics associated with the robustified estimators are developed. These include statistics for goodness of fit of a model. An outlying score, similar to but more robust than the Mahalanobis distance, is also proposed. The new scores make it easier to identify outlying observations. A Monte Carlo simulation and an analysis of a real data set show that the proposed method works better than ordinary Gaussian graphical modeling and some other robustified multivariate estimators.

Suggested Citation

  • Miyamura, Masashi & Kano, Yutaka, 2006. "Robust Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1525-1550, August.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1525-1550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00033-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Croux, Christophe & Haesbroeck, Gentiane, 1999. "Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 161-190, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:jmvana:v:161:y:2017:i:c:p:172-190 is not listed on IDEAS
    2. Fujisawa, Hironori & Eguchi, Shinto, 2008. "Robust parameter estimation with a small bias against heavy contamination," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2053-2081, October.
    3. Vinciotti, Veronica & Hashem, Hussein, 2013. "Robust methods for inferring sparse network structures," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 84-94.
    4. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:7:p:1525-1550. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.