IDEAS home Printed from
   My bibliography  Save this article

Robust methods for inferring sparse network structures


  • Vinciotti, Veronica
  • Hashem, Hussein


Networks appear in many fields, from finance to medicine, engineering, biology and social science. They often comprise of a very large number of entities, the nodes, and the interest lies in inferring the interactions between these entities, the edges, from relatively limited data. If the underlying network of interactions is sparse, two main statistical approaches are used to retrieve such a structure: covariance modeling approaches with a penalty constraint that encourages sparsity of the network, and nodewise regression approaches with sparse regression methods applied at each node. In the presence of outliers or departures from normality, robust approaches have been developed which relax the assumption of normality. Robust covariance modeling approaches are reviewed and compared with novel nodewise approaches where robust methods are used at each node. For low-dimensional problems, classical deviance tests are also included and compared with penalized likelihood approaches. Overall, copula approaches are found to perform best: they are comparable to the other methods under an assumption of normality or mild departures from this, but they are superior to the other methods when the assumption of normality is strongly violated.

Suggested Citation

  • Vinciotti, Veronica & Hashem, Hussein, 2013. "Robust methods for inferring sparse network structures," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 84-94.
  • Handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:84-94
    DOI: 10.1016/j.csda.2013.05.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jinfeng Xu & Zhiliang Ying, 2010. "Simultaneous estimation and variable selection in median regression using Lasso-type penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 487-514, June.
    2. Gottard, Anna & Pacillo, Simona, 2010. "Robust concentration graph model selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3070-3079, December.
    3. Miyamura, Masashi & Kano, Yutaka, 2006. "Robust Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1525-1550, August.
    4. Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
    5. D. Vogel & R. Fried, 2011. "Elliptical graphical modelling," Biometrika, Biometrika Trust, vol. 98(4), pages 935-951.
    6. Arslan, Olcay, 2012. "Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1952-1965.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:jmvana:v:161:y:2017:i:c:p:172-190 is not listed on IDEAS
    2. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    3. Lin, Lijing & Higham, Nicholas J. & Pan, Jianxin, 2014. "Covariance structure regularization via entropy loss function," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 315-327.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:84-94. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.