IDEAS home Printed from
   My bibliography  Save this paper

Rank Tests for Elliptical Graphical Modeling


  • Davy Paindaveine
  • Thomas Verdebout


As a reaction to the restrictive Gaussian assumptions that are usually part of graphical models, Vogel and Fried [17] recently introduced elliptical graphical models, in which the vector of variables at hand is assumed to have an elliptical distribution. The present work introduces a class of rank tests in the context of elliptical graphical models. The proposed tests are valid under any elliptical density, and in particular do not require any moment assumption. They achieve local and asymptotic optimality under correctly specified densities. Their asymptotic properties are investigated both under the null and under sequences of local alternatives. Asymptotic relative efficiencies with respect to the corresponding pseudo-Gaussian competitors are derived, which allows to show that, when based on normal scores, the proposed rank tests uniformly dominate the pseudo-Gaussian tests in the Pitman sense. The asymptotic results are confirmed through a Monte-Carlo study.

Suggested Citation

  • Davy Paindaveine & Thomas Verdebout, 2011. "Rank Tests for Elliptical Graphical Modeling," Working Papers ECARES ECARES 2011-039, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/104766

    Download full text from publisher

    File URL:
    File Function: 2011-039-PAINDAVEINE_VERDEBOUT-ranktests
    Download Restriction: info:eu-repo/semantics/openAccess

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Paindaveine, Davy, 2006. "A Chernoff-Savage result for shape:On the non-admissibility of pseudo-Gaussian methods," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2206-2220, November.
    2. Sirkku Pauliina Ilmonen & Davy Paindaveine, 2011. "Semiparametrically Efficient Inference Based on Signed Ranks in Symmetric Independent Component Models," Working Papers ECARES ECARES 2011-003, ULB -- Universite Libre de Bruxelles.
    3. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    More about this item


    conditional independence; graphical models; local symptotic normality; psuedo-gaussian tests; rank tests; scatter matrix; signed ranks;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/104766. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.