IDEAS home Printed from
   My bibliography  Save this article

On[alpha]-Symmetric Multivariate Characteristic Functions


  • Gneiting, Tilmann


Ann-dimensional random vector is said to have an[alpha]-symmetric distribution,[alpha]>0, if its characteristic function is of the form[phi]((u1[alpha]+...+un[alpha])1/[alpha]). We study the classes[Phi]n([alpha]) of all admissible functions[phi]: [0, [infinity])-->. It is known that members of[Phi]n(2) and[Phi]n(1) are scale mixtures of certain primitives[Omega]nand[omega]n, respectively, and we show that[omega]nis obtained from[Omega]2n-1byn-1 successive integrations. Consequently, curious relations between 1- and 2- (or spherically) symmetric distributions arise. An analogue of Askey's criterion gives a partial solution to a question of D. St. P. Richards: If[phi](0)=1,[phi]is continuous, limt-->[infinity] [phi](t)=0, and[phi](2n-2)(t) is convex, then[phi][set membership, variant][Phi]n(1). The paper closes with various criteria for the unimodality of an[alpha]-symmetric distribution.

Suggested Citation

  • Gneiting, Tilmann, 1998. "On[alpha]-Symmetric Multivariate Characteristic Functions," Journal of Multivariate Analysis, Elsevier, vol. 64(2), pages 131-147, February.
  • Handle: RePEc:eee:jmvana:v:64:y:1998:i:2:p:131-147

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    2. Berk, Robert & Hwang, Jiunn T., 1989. "Optimality of the least squares estimator," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 245-254, August.
    3. Richards, Donald St. P., 1986. "Positive definite symmetric functions on finite dimensional spaces. I. Applications of the Radon transform," Journal of Multivariate Analysis, Elsevier, vol. 19(2), pages 280-298, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rustam Ibragimov, 2005. "Portfolio Diversification and Value At Risk Under Thick-Tailedness," Yale School of Management Working Papers amz2386, Yale School of Management, revised 01 Aug 2005.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:64:y:1998:i:2:p:131-147. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.