IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Analytic valuation formulas for range notes and an affine term structure model with jump risks

  • Jang, Bong-Gyu
  • Yoon, Ji Hee
Registered author(s):

    We derive analytic valuation formulas for range accrual notes and spread range accrual notes under an affine term structure model with jump risks. We show that the value of a range accrual note can be significantly affected by the choice of interest rate model and the arrival intensity of jump risks. We also show that misuse of the correlation between reference rates of a spread range accrual note may lead traders and risk managers to mispricing of the note.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Banking & Finance.

    Volume (Year): 34 (2010)
    Issue (Month): 9 (September)
    Pages: 2132-2145

    in new window

    Handle: RePEc:eee:jbfina:v:34:y:2010:i:9:p:2132-2145
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Olivier Scaillet & Boris Leblanc, 1998. "Path dependent options on yields in the affine term structure model," Finance and Stochastics, Springer, vol. 2(4), pages 349-367.
    2. Caio Almeida & José Vicente, 2009. "Are Interest Rate Options Important for the Assessment of Interest Rate Risk?," Working Papers Series 179, Central Bank of Brazil, Research Department.
    3. BROZE, Laurence & SCAILLET, Olivier & ZAKOIANÂ , Jean-Michel, 1993. "Testing for Continuous-Time Models of the Short-Term Interest Rate," CORE Discussion Papers 1993031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    5. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    6. Gibbons, Michael R & Ramaswamy, Krishna, 1993. "A Test of the Cox, Ingersoll, and Ross Model of the Term Structure," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 619-58.
    7. Wright, Jonathan H. & Zhou, Hao, 2009. "Bond risk premia and realized jump risk," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2333-2345, December.
    8. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    9. Robert Jarrow & Stuart Turnbull, 1994. "Delta, gamma and bucket hedging of interest rate derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(1), pages 21-48.
    10. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    11. Pearson, Neil D & Sun, Tong-Sheng, 1994. " Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
    12. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
    13. Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
    14. Jiang, George & Yan, Shu, 2009. "Linear-quadratic term structure models - Toward the understanding of jumps in interest rates," Journal of Banking & Finance, Elsevier, vol. 33(3), pages 473-485, March.
    15. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    16. Jo�o Pedro Vidal Nunes, 2004. "MultiFactor Valuation of Floating Range Notes," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 79-97.
    17. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    18. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-09, March.
    19. David F. Schrager & Antoon A. J. Pelsser, 2006. "Pricing Swaptions And Coupon Bond Options In Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 673-694.
    20. Minenna, Marcello & Verzella, Paolo, 2008. "A revisited and stable Fourier transform method for affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2064-2075, October.
    21. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
    22. Kenneth J. Singleton & Len Umantsev, 2002. "Pricing Coupon-Bond Options And Swaptions In Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 427-446.
    23. Sanford, Andrew D. & Martin, Gael M., 2005. "Simulation-based Bayesian estimation of an affine term structure model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 527-554, April.
    24. Patrick Navatte & François Quittard‐Pinon, 1999. "The Valuation of Interest Rate Digital Options and Range Notes Revisited," European Financial Management, European Financial Management Association, vol. 5(3), pages 425-440.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:34:y:2010:i:9:p:2132-2145. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.