IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v34y2010i9p2132-2145.html
   My bibliography  Save this article

Analytic valuation formulas for range notes and an affine term structure model with jump risks

Author

Listed:
  • Jang, Bong-Gyu
  • Yoon, Ji Hee

Abstract

We derive analytic valuation formulas for range accrual notes and spread range accrual notes under an affine term structure model with jump risks. We show that the value of a range accrual note can be significantly affected by the choice of interest rate model and the arrival intensity of jump risks. We also show that misuse of the correlation between reference rates of a spread range accrual note may lead traders and risk managers to mispricing of the note.

Suggested Citation

  • Jang, Bong-Gyu & Yoon, Ji Hee, 2010. "Analytic valuation formulas for range notes and an affine term structure model with jump risks," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2132-2145, September.
  • Handle: RePEc:eee:jbfina:v:34:y:2010:i:9:p:2132-2145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(10)00058-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, pages 199-223.
    2. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    5. Sanford, Andrew D. & Martin, Gael M., 2005. "Simulation-based Bayesian estimation of an affine term structure model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 527-554, April.
    6. Pearson, Neil D & Sun, Tong-Sheng, 1994. " Exploiting the Conditional Density in Estimating the Term Structure: An Application to the Cox, Ingersoll, and Ross Model," Journal of Finance, American Finance Association, vol. 49(4), pages 1279-1304, September.
    7. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    8. Wright, Jonathan H. & Zhou, Hao, 2009. "Bond risk premia and realized jump risk," Journal of Banking & Finance, Elsevier, vol. 33(12), pages 2333-2345, December.
    9. Minenna, Marcello & Verzella, Paolo, 2008. "A revisited and stable Fourier transform method for affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2064-2075, October.
    10. Jiang, George & Yan, Shu, 2009. "Linear-quadratic term structure models - Toward the understanding of jumps in interest rates," Journal of Banking & Finance, Elsevier, vol. 33(3), pages 473-485, March.
    11. Almeida, Caio & Vicente, José, 2009. "Are interest rate options important for the assessment of interest rate risk?," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1376-1387, August.
    12. Jamshidian, Farshid, 1989. " An Exact Bond Option Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 205-209, March.
    13. Patrick Navatte & François Quittard‐Pinon, 1999. "The Valuation of Interest Rate Digital Options and Range Notes Revisited," European Financial Management, European Financial Management Association, vol. 5(3), pages 425-440.
    14. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    15. Kenneth J. Singleton & Len Umantsev, 2002. "Pricing Coupon-Bond Options And Swaptions In Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 427-446.
    16. Olivier Scaillet & Boris Leblanc, 1998. "Path dependent options on yields in the affine term structure model," Finance and Stochastics, Springer, vol. 2(4), pages 349-367.
    17. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    18. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    19. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    20. David F. Schrager & Antoon A. J. Pelsser, 2006. "Pricing Swaptions And Coupon Bond Options In Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 673-694.
    21. Robert Jarrow & Stuart Turnbull, 1994. "Delta, gamma and bucket hedging of interest rate derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(1), pages 21-48.
    22. Gibbons, Michael R & Ramaswamy, Krishna, 1993. "A Test of the Cox, Ingersoll, and Ross Model of the Term Structure," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 619-658.
    23. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
    24. João Pedro Vidal Nunes, 2004. "MultiFactor Valuation of Floating Range Notes," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 79-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baaquie, Belal E. & Du, Xin & Tang, Pan & Cao, Yang, 2014. "Pricing of range accrual swap in the quantum finance Libor Market Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 182-200.
    2. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:34:y:2010:i:9:p:2132-2145. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.