IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27yi3p777-803.html
   My bibliography  Save this article

An empirical analysis of neural network memory structures for basin water quality forecasting

Author

Listed:
  • West, David
  • Dellana, Scott

Abstract

This research investigates the cumulative multi-period forecast accuracy of a diverse set of potential forecasting models for basin water quality management. The models are characterized by their short-term (memory by delay or memory by feedback) and long-term (linear or nonlinear) memory structures. The experiments are conducted as a series of forecast cycles, with a rolling origin of a constant fit size. The models are recalibrated with each cycle, and out-of-sample forecasts are generated for a five-period forecast horizon. The results confirm that the JENN and GMNN neural network models are generally more accurate than competitors for cumulative multi-period basin water quality prediction. For example, the JENN and GMNN models reduce the cumulative five-period forecast errors by as much as 50%, relative to exponential smoothing and ARIMA models. These findings are significant in view of the increasing social and economic consequences of basin water quality management, and have the potential for extention to other scientific, medical, and business applications where multi-period predictions of nonlinear time series are critical.

Suggested Citation

  • West, David & Dellana, Scott, 2011. "An empirical analysis of neural network memory structures for basin water quality forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 777-803, July.
  • Handle: RePEc:eee:intfor:v:27:y::i:3:p:777-803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207010001421
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armstrong, J. Scott, 2007. "Significance Tests Harm Progress in Forecasting," MPRA Paper 81664, University Library of Munich, Germany.
    2. repec:eee:ecomod:v:205:y:2007:i:3:p:355-364 is not listed on IDEAS
    3. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    4. Armstrong, J. Scott, 2007. "Significance tests harm progress in forecasting," International Journal of Forecasting, Elsevier, vol. 23(2), pages 321-327.
    5. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    2. repec:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1785-4 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:3:p:777-803. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.