IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v25y2009i4p760-772.html
   My bibliography  Save this article

Fast and frugal forecasting

Author

Listed:
  • Goldstein, Daniel G.
  • Gigerenzer, Gerd

Abstract

Simple statistical forecasting rules, which are usually simplifications of classical models, have been shown to make better predictions than more complex rules, especially when the future values of a criterion are highly uncertain. In this article, we provide evidence that some of the fast and frugal heuristics that people use intuitively are able to make forecasts that are as good as or better than those of knowledge-intensive procedures. We draw from research on the adaptive toolbox and ecological rationality to demonstrate the power of using intuitive heuristics for forecasting in various domains including sport, business, and crime.

Suggested Citation

  • Goldstein, Daniel G. & Gigerenzer, Gerd, 2009. "Fast and frugal forecasting," International Journal of Forecasting, Elsevier, vol. 25(4), pages 760-772, October.
  • Handle: RePEc:eee:intfor:v:25:y:2009:i:4:p:760-772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00081-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. MacKinlay, A Craig & Pastor, Lubos, 2000. "Asset Pricing Models: Implications for Expected Returns and Portfolio Selection," The Review of Financial Studies, Society for Financial Studies, vol. 13(4), pages 883-916.
    3. Fildes, Robert & Nikolopoulos, Konstantinos, 2006. "Spyros Makridakis: An interview with the International Journal of Forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 625-636.
    4. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    5. Boulier, Bryan L. & Stekler, H. O., 2003. "Predicting the outcomes of National Football League games," International Journal of Forecasting, Elsevier, vol. 19(2), pages 257-270.
    6. Andersson, Patric & Edman, Jan & Ekman, Mattias, 2005. "Predicting the World Cup 2002 in soccer: Performance and confidence of experts and non-experts," International Journal of Forecasting, Elsevier, vol. 21(3), pages 565-576.
    7. Boulier, Bryan L. & Stekler, H. O., 1999. "Are sports seedings good predictors?: an evaluation," International Journal of Forecasting, Elsevier, vol. 15(1), pages 83-91, February.
    8. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    9. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    10. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    11. Forrest, David & Simmons, Robert, 2000. "Forecasting sport: the behaviour and performance of football tipsters," International Journal of Forecasting, Elsevier, vol. 16(3), pages 317-331.
    12. John Conlisk, 1996. "Why Bounded Rationality?," Journal of Economic Literature, American Economic Association, vol. 34(2), pages 669-700, June.
    13. Ľuboš Pástor, 2000. "Portfolio Selection and Asset Pricing Models," Journal of Finance, American Finance Association, vol. 55(1), pages 179-223, February.
    14. Laura Martignon & Ulrich Hoffrage, 2002. "Fast, frugal, and fit: Simple heuristics for paired comparison," Theory and Decision, Springer, vol. 52(1), pages 29-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scheibehenne, Benjamin & Broder, Arndt, 2007. "Predicting Wimbledon 2005 tennis results by mere player name recognition," International Journal of Forecasting, Elsevier, vol. 23(3), pages 415-426.
    2. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    3. Matthias M. M. Buehlmaier & Kit Pong Wong, 2020. "Should investors join the index revolution? Evidence from around the world," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 192-218, May.
    4. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    5. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    6. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    7. Moorman, Theodore, 2014. "An empirical investigation of methods to reduce transaction costs," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 230-246.
    8. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    9. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    10. del Corral, Julio & Prieto-Rodríguez, Juan, 2010. "Are differences in ranks good predictors for Grand Slam tennis matches?," International Journal of Forecasting, Elsevier, vol. 26(3), pages 551-563, July.
    11. Tu, Jun & Zhou, Guofu, 2010. "Incorporating Economic Objectives into Bayesian Priors: Portfolio Choice under Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 959-986, August.
    12. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    13. Fabrizio Cipollini & Giampiero Gallo & Alessandro Palandri, 2020. "A Dynamic Conditional Approach to Portfolio Weights Forecasting," Econometrics Working Papers Archive 2020_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    14. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    15. Michael Senescall & Rand Kwong Yew Low, 2024. "Quantitative Portfolio Management: Review and Outlook," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
    16. Irina Murtazashvili & Nadia Vozlyublennaia, 2013. "Diversification Strategies: Do Limited Data Constrain Investors?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 36(2), pages 215-232, June.
    17. Fletcher, Jonathan, 2011. "Do optimal diversification strategies outperform the 1/N strategy in U.K. stock returns?," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 375-385.
    18. Evan Anderson & Ai-ru (Meg) Cheng, 2022. "Portfolio Choices with Many Big Models," Management Science, INFORMS, vol. 68(1), pages 690-715, January.
    19. Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
    20. Alessandro Innocenti & Tommaso Nannicini & Roberto Ricciuti, 2021. "The Importance of Betting Early," Risks, MDPI, vol. 9(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:25:y:2009:i:4:p:760-772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.