IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v15y1999i4p431-443.html
   My bibliography  Save this article

Comparison of seasonal estimation methods in multi-item short-term forecasting

Author

Listed:
  • Bunn, Derek W.
  • Vassilopoulos, Angelos I.

Abstract

No abstract is available for this item.

Suggested Citation

  • Bunn, Derek W. & Vassilopoulos, Angelos I., 1999. "Comparison of seasonal estimation methods in multi-item short-term forecasting," International Journal of Forecasting, Elsevier, vol. 15(4), pages 431-443, October.
  • Handle: RePEc:eee:intfor:v:15:y:1999:i:4:p:431-443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(99)00005-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Withycombe, Richard, 1989. "Forecasting with combined seasonal indices," International Journal of Forecasting, Elsevier, vol. 5(4), pages 547-552.
    2. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    3. Bunn, Derek W. & Vassilopoulos, A. I., 1993. "Using group seasonal indices in multi-item short-term forecasting," International Journal of Forecasting, Elsevier, vol. 9(4), pages 517-526, December.
    4. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 293-305, September.
    5. Bunn, Derek W., 1985. "Statistical efficiency in the linear combination of forecasts," International Journal of Forecasting, Elsevier, vol. 1(2), pages 151-163.
    6. Fomby, Thomas B & Samanta, Subarna K, 1991. "Application of Stein Rules to Combination Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 391-407, October.
    7. Greis, Noel P. & Gilstein, C. Zachary, 1991. "Empirical Bayes methods for telecommunications forecasting," International Journal of Forecasting, Elsevier, vol. 7(2), pages 183-197, August.
    8. Maier, JR & Simkin, LP, 1988. "Prioritising stock phasing for multiple retailers," Omega, Elsevier, vol. 16(1), pages 33-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Don M. & Williams, Dan, 2003. "Shrinkage estimators of time series seasonal factors and their effect on forecasting accuracy," International Journal of Forecasting, Elsevier, vol. 19(4), pages 669-684.
    2. Dekker, Mark & van Donselaar, Karel & Ouwehand, Pim, 2004. "How to use aggregation and combined forecasting to improve seasonal demand forecasts," International Journal of Production Economics, Elsevier, vol. 90(2), pages 151-167, July.
    3. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    4. Bakker, Bart & Heskes, Tom, 2007. "Learning and approximate inference in dynamic hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 821-839, October.
    5. Armstrong, J. Scott, 2004. "Damped seasonality factors: Introduction," International Journal of Forecasting, Elsevier, vol. 20(4), pages 525-527.
    6. Gorr, Wilpen & Harries, Richard, 2003. "Introduction to crime forecasting," International Journal of Forecasting, Elsevier, vol. 19(4), pages 551-555.
    7. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    8. Gur Ali, Ozden & Pinar, Efe, 2016. "Multi-period-ahead forecasting with residual extrapolation and information sharing — Utilizing a multitude of retail series," International Journal of Forecasting, Elsevier, vol. 32(2), pages 502-517.
    9. Chen, Huijing & Boylan, John E., 2008. "Empirical evidence on individual, group and shrinkage seasonal indices," International Journal of Forecasting, Elsevier, vol. 24(3), pages 525-534.
    10. repec:pal:jorsoc:v:59:y:2008:i:9:d:10.1057_palgrave.jors.2602597 is not listed on IDEAS
    11. Miller, Don M. & Williams, Dan, 2004. "Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program," International Journal of Forecasting, Elsevier, vol. 20(4), pages 529-549.
    12. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    13. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    14. Zotteri, Giulio & Kalchschmidt, Matteo, 2007. "A model for selecting the appropriate level of aggregation in forecasting processes," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 74-83, July.
    15. Pim Ouwehand & Rob J. Hyndman & Ton G. de Kok & Karel H. van Donselaar, 2007. "A state space model for exponential smoothing with group seasonality," Monash Econometrics and Business Statistics Working Papers 7/07, Monash University, Department of Econometrics and Business Statistics.
    16. repec:pal:jorsoc:v:58:y:2007:i:12:d:10.1057_palgrave.jors.2602310 is not listed on IDEAS
    17. Gorr, Wilpen & Olligschlaeger, Andreas & Thompson, Yvonne, 2003. "Short-term forecasting of crime," International Journal of Forecasting, Elsevier, vol. 19(4), pages 579-594.
    18. Dolgui, Alexandre & Pashkevich, Maksim, 2008. "Demand forecasting for multiple slow-moving items with short requests history and unequal demand variance," International Journal of Production Economics, Elsevier, vol. 112(2), pages 885-894, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:15:y:1999:i:4:p:431-443. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.