IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v18y1996i2p89-107.html

Mixtures of tails in clustered automobile collision claims

Author

Listed:
  • Kalb, Guyonne R. J.
  • Kofman, Paul
  • Vorst, Ton C. F.

Abstract

Knowledge of the tail shape of claim distributions provides important actuarial information. This paper discusses how two techniques commonly used in assessing the most appropriate underlying distribution can be usefully combined. The maximum likelihood approach is theoretically appealing since it is preferable to many other estimators in the sense of best asymptotic normality. Likelihood based tests are, however, not always capable of discriminating among non-nested classes of distributions. Extremal value theory offers an attractive tool to overcome this problem. A much larger set of distribution classes is nested by their tail parameter. This paper shows that both estimation strategies can be usefully combined when the data generating process is characterized by strong clustering in time and size. We find that the extreme value theory is a useful starting point in detecting the appropriate distribution class. Once that has been achieved, the likelihood-based EM-algorithm is proposed to capture the clustering phenomena. Clustering is particularly pervasive in actuarial data. An empirical application to a four-year data set of Dutch automobile collision claims is therefore used to illustrate the approach.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kalb, Guyonne R. J. & Kofman, Paul & Vorst, Ton C. F., 1996. "Mixtures of tails in clustered automobile collision claims," Insurance: Mathematics and Economics, Elsevier, vol. 18(2), pages 89-107, July.
  • Handle: RePEc:eee:insuma:v:18:y:1996:i:2:p:89-107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-6687(95)00029-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beirlant, Jan & Teugels, Jozef L., 1992. "Modeling large claims in non-life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 11(1), pages 17-29, April.
    2. Hogg, Robert V. & Klugman, Stuart A., 1983. "On the estimation of long tailed skewed distributions with actuarial applications," Journal of Econometrics, Elsevier, vol. 23(1), pages 91-102, September.
    3. White, Halbert, 1982. "Regularity conditions for cox's test of non-nested hypotheses," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 301-318, August.
    4. Weba, Michael, 1993. "Fitting a parametric distribution for large claims in case of censored or partitioned data," Insurance: Mathematics and Economics, Elsevier, vol. 12(2), pages 155-165, April.
    5. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    6. Ruud, Paul A., 1991. "Extensions of estimation methods using the EM algorithm," Journal of Econometrics, Elsevier, vol. 49(3), pages 305-341, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bolance, Catalina & Guillen, Montserrat & Nielsen, Jens Perch, 2003. "Kernel density estimation of actuarial loss functions," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 19-36, February.
    2. Mohamed El Ghourabi & Amira Dridi & Mohamed Limam, 2015. "A new financial stress index model based on support vector regression and control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 775-788, April.
    3. Amira Dridi & Mohamed El Ghourabi & Mohamed Limam, 2012. "On monitoring financial stress index with extreme value theory," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 329-339, March.
    4. Pozo, Susan & Amuedo-Dorantes, Catalina, 2003. "Statistical distributions and the identification of currency crises," Journal of International Money and Finance, Elsevier, vol. 22(4), pages 591-609, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T.R.L. Fry & R.D. Brooks & Br. Comley & J. Zhang, 1993. "Economic Motivations for Limited Dependent and Qualitative Variable Models," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 193-205, June.
    2. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    5. Chengping Gong & Chengxiu Ling, 2018. "Robust Estimations for the Tail Index of Weibull-Type Distribution," Risks, MDPI, vol. 6(4), pages 1-15, October.
    6. Navya Jayesh Mehta & Fan Yang, 2022. "Portfolio Optimization for Extreme Risks with Maximum Diversification: An Empirical Analysis," Risks, MDPI, vol. 10(5), pages 1-26, May.
    7. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    8. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    9. Domanski, Adam, 2009. "Estimating Mixed Logit Recreation Demand Models With Large Choice Sets," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49413, Agricultural and Applied Economics Association.
    10. Xiangen Hu & William Batchelder, 1994. "The statistical analysis of general processing tree models with the EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 59(1), pages 21-47, March.
    11. Andrea B & Benedikt R, 2017. "The Analytical Covariance Matrix for Regime - Switch in Models," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 4(1), pages 1-3, November.
    12. McAleer, Michael, 1995. "The significance of testing empirical non-nested models," Journal of Econometrics, Elsevier, vol. 67(1), pages 149-171, May.
    13. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    14. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    15. Gardes, Laurent & Girard, Stéphane, 2016. "On the estimation of the functional Weibull tail-coefficient," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 29-45.
    16. Monfardini, Chiara, 2003. "An illustration of Cox's non-nested testing procedure for logit and probit models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 425-444, March.
    17. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    18. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    19. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    20. Philipp Weber & Bernd Rosenow, 2006. "Large stock price changes: volume or liquidity?," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 7-14.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:18:y:1996:i:2:p:89-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.