IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v19y2025i1s1751157724001445.html
   My bibliography  Save this article

Integrating persistence process into the analysis of technology convergence using STERGM

Author

Listed:
  • Yang, Guancan
  • Liu, Di
  • Chen, Ling
  • Lu, Kun

Abstract

Understanding the dynamics of technology convergence is indispensable for both academic and industrial perspectives. Traditional analyses have mainly focused on the link formation process, overlooking the role that persistence process plays in shaping technology networks. This paper endeavors to fill this gap by incorporating the persistence process into the analysis of technology convergence using the Separate Temporal Exponential Random Graph Model (STERGM). Utilizing a decade-long dataset of breast cancer drug patents, we provide a comprehensive view of technology convergence mechanisms and their predictive capabilities. Our findings reveal significant differences in network effects between formation and persistence processes, indicating that focusing on only one may misrepresent the evolution of technology networks. The combined model achieves an F1 score of 69.54% in empirical forecasting, confirming its practical utility. Additionally, we introduce Intensification Networks to examine how existing ties strengthen or weaken over time, uncovering the critical role of intensification in the long-term evolution of technology convergence. By capturing both the formation of new ties and the intensification of existing ones, our model offers a more nuanced and forward-looking understanding of convergence dynamics, particularly in identifying potential areas for future technology convergence.

Suggested Citation

  • Yang, Guancan & Liu, Di & Chen, Ling & Lu, Kun, 2025. "Integrating persistence process into the analysis of technology convergence using STERGM," Journal of Informetrics, Elsevier, vol. 19(1).
  • Handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001445
    DOI: 10.1016/j.joi.2024.101632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724001445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    2. Jae Young Choi & Seongkyoon Jeong & Kyunam Kim, 2015. "A Study on Diffusion Pattern of Technology Convergence: Patent Analysis for Korea," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    3. Peng, Tai-Quan, 2015. "Assortative mixing, preferential attachment, and triadic closure: A longitudinal study of tie-generative mechanisms in journal citation networks," Journal of Informetrics, Elsevier, vol. 9(2), pages 250-262.
    4. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    5. Weihua An & Ying Ding, 2018. "The Landscape of Causal Inference: Perspective From Citation Network Analysis," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 265-277, July.
    6. Dieter F. Kogler & David L. Rigby & Isaac Tucker, 2013. "Mapping Knowledge Space and Technological Relatedness in US Cities," European Planning Studies, Taylor & Francis Journals, vol. 21(9), pages 1374-1391, September.
    7. Abbasi, Alireza & Hossain, Liaquat & Leydesdorff, Loet, 2012. "Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks," Journal of Informetrics, Elsevier, vol. 6(3), pages 403-412.
    8. Kibae Kim & Jörn Altmann, 2015. "Effect of Homophily on Network Formation," TEMEP Discussion Papers 2015121, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2017.
    9. Changyong Lee & Suckwon Hong & Juram Kim, 2021. "Anticipating multi-technology convergence: a machine learning approach using patent information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1867-1896, March.
    10. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    11. Tom Broekel & Marcel Bednarz, 2018. "Disentangling link formation and dissolution in spatial networks: An Application of a Two-Mode STERGM to a Project-Based R&D Network in the German Biotechnology Industry," Networks and Spatial Economics, Springer, vol. 18(3), pages 677-704, September.
    12. Hyunseok Park & Janghyeok Yoon, 2014. "Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: the case of Korean national R&D," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 853-890, February.
    13. Cantner, Uwe & Graf, Holger, 2006. "The network of innovators in Jena: An application of social network analysis," Research Policy, Elsevier, vol. 35(4), pages 463-480, May.
    14. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    15. Losacker, Sebastian, 2022. "‘License to green’: Regional patent licensing networks and green technology diffusion in China," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    16. Matti Karvonen & Tuomo Kassi & Rahul Kapoor, 2010. "Technological innovation strategies in converging industries," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 4(5), pages 391-410.
    17. Youtie, Jan & Shapira, Philip, 2008. "Building an innovation hub: A case study of the transformation of university roles in regional technological and economic development," Research Policy, Elsevier, vol. 37(8), pages 1188-1204, September.
    18. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    19. Steven Goodreau & James Kitts & Martina Morris, 2009. "Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks," Demography, Springer;Population Association of America (PAA), vol. 46(1), pages 103-125, February.
    20. Han, Eun Jin & Sohn, So Young, 2016. "Technological convergence in standards for information and communication technologies," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 1-10.
    21. Sándor Juhász & Balázs Lengyel, 2018. "Creation and persistence of ties in cluster knowledge networks," Journal of Economic Geography, Oxford University Press, vol. 18(6), pages 1203-1226.
    22. Chenwei Zhang & Yi Bu & Ying Ding & Jian Xu, 2018. "Understanding scientific collaboration: Homophily, transitivity, and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(1), pages 72-86, January.
    23. Kim, Namil & Lee, Hyeokseong & Kim, Wonjoon & Lee, Hyunjong & Suh, Jong Hwan, 2015. "Dynamic patterns of industry convergence: Evidence from a large amount of unstructured data," Research Policy, Elsevier, vol. 44(9), pages 1734-1748.
    24. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    25. Michael Lebacher & Paul W. Thurner & Göran Kauermann, 2021. "A dynamic separable network model with actor heterogeneity: An application to global weapons transfers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 201-226, January.
    26. Tom Broekel & Pierre-Alexandre Balland & Martijn Burger & Frank Oort, 2014. "Modeling knowledge networks in economic geography: a discussion of four methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 423-452, September.
    27. Stefano Breschi & Francesco Lissoni, 2009. "Mobility of skilled workers and co-invention networks: an anatomy of localized knowledge flows," Journal of Economic Geography, Oxford University Press, vol. 9(4), pages 439-468, July.
    28. Lee, Won Sang & Han, Eun Jin & Sohn, So Young, 2015. "Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 317-329.
    29. Leifeld, Philip & Cranmer, Skyler J., 2019. "A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model," Network Science, Cambridge University Press, vol. 7(1), pages 20-51, March.
    30. Pavel N. Krivitsky & Mark S. Handcock, 2014. "A separable model for dynamic networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 29-46, January.
    31. Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
    32. Ibrahim, Awad Elsayed Awad & Elamer, Ahmed A. & Ezat, Amr Nazieh, 2021. "The convergence of big data and accounting: innovative research opportunities," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    33. Handcock, Mark S. & Hunter, David R. & Butts, Carter T. & Goodreau, Steven M. & Morris, Martina, 2008. "statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i01).
    34. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    35. Sun, Yutao & Grimes, Seamus, 2017. "The actors and relations in evolving networks: The determinants of inter-regional technology transaction in China," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 125-136.
    36. Zhenfu Li & Yixuan Wang & Zhao Deng, 2022. "Research on Evolution Characteristics and Factors of Nordic Green Patent Citation Network," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    37. Sofia Dokuka & Diliara Valeeva, 2015. "Statistical Models for Analysis of Social Network Dynamics in Educational Studies," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 1, pages 201-213.
    38. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
    39. Yang, Guancan & Xing, Jiaxin & Xu, Shuo & Zhao, Yuntian, 2024. "A framework armed with node dynamics for predicting technology convergence," Journal of Informetrics, Elsevier, vol. 18(4).
    40. Manajit Chakraborty & Maksym Byshkin & Fabio Crestani, 2020. "Patent citation network analysis: A perspective from descriptive statistics and ERGMs," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-28, December.
    41. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seo, Wonchul & Afifuddin, Mokh, 2024. "Developing a supervised learning model for anticipating potential technology convergence between technology topics," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    2. Sajad Ashouri & Anne-Laure Mention & Kosmas X. Smyrnios, 2021. "Anticipation and analysis of industry convergence using patent-level indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5727-5758, July.
    3. Jong Wook Lee & So Young Sohn, 2021. "Patent data based search framework for IT R&D employees for convergence technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5687-5705, July.
    4. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    5. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Abbasiharofteh, Milad & Kogler, Dieter F. & Lengyel, Balázs, 2023. "Atypical combinations of technologies in regional co-inventor networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 52(10), pages 1-1.
    8. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    9. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    10. Jie Liu, 2024. "“Divergent” cross-domain stretching for technology fusion: validating the knowledge partition search model using patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3023-3043, June.
    11. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    12. Stefano Basilico & Holger Graf, 2023. "Bridging technologies in the regional knowledge space: measurement and evolution," Journal of Evolutionary Economics, Springer, vol. 33(4), pages 1085-1124, September.
    13. Sasaki, Hajime & Sakata, Ichiro, 2021. "Identifying potential technological spin-offs using hierarchical information in international patent classification," Technovation, Elsevier, vol. 100(C).
    14. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    15. He, Chaocheng & Liu, Fuzhen & Dong, Ke & Wu, Jiang & Zhang, Qingpeng, 2023. "Research on the formation mechanism of research leadership relations: An exponential random graph model analysis approach," Journal of Informetrics, Elsevier, vol. 17(2).
    16. Sandro Montresor & Gianluca Orsatti & Francesco Quatraro, 2023. "Technological novelty and key enabling technologies: evidence from European regions," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(6), pages 851-872, August.
    17. Li, Xin & Wang, Yan, 2024. "A novel integrated approach for quantifying the convergence of disruptive technologies from science to technology," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    18. Kim, Tae San & Sohn, So Young, 2020. "Machine-learning-based deep semantic analysis approach for forecasting new technology convergence," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    19. Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    20. Adam Whittle, 2017. "Local and Non-Local Knowledge Typologies: Technological Complexity in the Irish Knowledge Space," Papers in Evolutionary Economic Geography (PEEG) 1728, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Nov 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:19:y:2025:i:1:s1751157724001445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.