IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v106y2017icp114-133.html
   My bibliography  Save this article

Selecting efficient correlated equilibria through distributed learning

Author

Listed:
  • Marden, Jason R.

Abstract

A learning rule is completely uncoupled if each player's behavior is conditioned only on his own realized payoffs, and does not need to know the actions or payoffs of anyone else. We demonstrate a simple, completely uncoupled learning rule such that, in any finite normal form game with generic payoffs, the players' realized strategies implements a socially optimal coarse correlated (Hannan) equilibrium a very high proportion of the time. That is, the empirical frequency associated with the players' collective behavior will be consistent with a socially optimal coarse correlated equilibrium. A variant of the rule implements a socially optimal correlated equilibrium a very high proportion of the time.

Suggested Citation

  • Marden, Jason R., 2017. "Selecting efficient correlated equilibria through distributed learning," Games and Economic Behavior, Elsevier, vol. 106(C), pages 114-133.
  • Handle: RePEc:eee:gamebe:v:106:y:2017:i:c:p:114-133
    DOI: 10.1016/j.geb.2017.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825617301550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2017.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    2. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    3. , P. & , Peyton, 2006. "Regret testing: learning to play Nash equilibrium without knowing you have an opponent," Theoretical Economics, Econometric Society, vol. 1(3), pages 341-367, September.
    4. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    5. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    6. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    7. Itai Arieli & Yakov Babichenko, 2011. "Average Testing and the Efficient Boundary," Discussion Paper Series dp567, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    8. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holly P. Borowski & Jason R. Marden & Jeff S. Shamma, 2019. "Learning to Play Efficient Coarse Correlated Equilibria," Dynamic Games and Applications, Springer, vol. 9(1), pages 24-46, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    2. Burkhard Schipper, 2015. "Strategic teaching and learning in games," Working Papers 151, University of California, Davis, Department of Economics.
    3. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    4. Foster, Dean P. & Hart, Sergiu, 2018. "Smooth calibration, leaky forecasts, finite recall, and Nash dynamics," Games and Economic Behavior, Elsevier, vol. 109(C), pages 271-293.
    5. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    6. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Nov 2023.
    7. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    8. Vivaldo M. Mendes & Diana A. Mendes & Orlando Gomes, 2008. "Learning to Play Nash in Deterministic Uncoupled Dynamics," Working Papers Series 1 ercwp1808, ISCTE-IUL, Business Research Unit (BRU-IUL).
    9. Holly P. Borowski & Jason R. Marden & Jeff S. Shamma, 2019. "Learning to Play Efficient Coarse Correlated Equilibria," Dynamic Games and Applications, Springer, vol. 9(1), pages 24-46, March.
    10. Peiran Jiao, 2015. "The Double-Channeled Effects of Experience on Individual Investment Decisions: Experimental Evidence," Economics Series Working Papers 766, University of Oxford, Department of Economics.
    11. Pradelski, Bary S.R. & Young, H. Peyton, 2012. "Learning efficient Nash equilibria in distributed systems," Games and Economic Behavior, Elsevier, vol. 75(2), pages 882-897.
    12. Goldberg, Paul W. & Pastink, Arnoud, 2014. "On the communication complexity of approximate Nash equilibria," Games and Economic Behavior, Elsevier, vol. 85(C), pages 19-31.
    13. Friedman, Daniel & Rabanal, Jean Paul & Rud, Olga A. & Zhao, Shuchen, 2022. "On the empirical relevance of correlated equilibrium," Journal of Economic Theory, Elsevier, vol. 205(C).
    14. H Peyton Young & Jason R. Marden and Lucy Y. Pao, 2011. "Achieving Pareto Optimality Through Distributed Learning," Economics Series Working Papers 557, University of Oxford, Department of Economics.
    15. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    16. Babichenko, Yakov, 2012. "Completely uncoupled dynamics and Nash equilibria," Games and Economic Behavior, Elsevier, vol. 76(1), pages 1-14.
    17. Sergiu Hart & Yishay Mansour, 2006. "The Communication Complexity of Uncoupled Nash Equilibrium Procedures," Levine's Bibliography 122247000000001299, UCLA Department of Economics.
    18. Block, Juan I. & Fudenberg, Drew & Levine, David K., 2019. "Learning dynamics with social comparisons and limited memory," Theoretical Economics, Econometric Society, vol. 14(1), January.
    19. Karl Schlag & Andriy Zapechelnyuk, 2009. "Decision Making in Uncertain and Changing Environments," Discussion Papers 19, Kyiv School of Economics.
    20. Jean-François Laslier & Bernard Walliser, 2015. "Stubborn learning," Theory and Decision, Springer, vol. 79(1), pages 51-93, July.

    More about this item

    Keywords

    Game theory; Learning; Networked control;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:106:y:2017:i:c:p:114-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.