IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v19y2013i3p286-306.html
   My bibliography  Save this article

Forest carbon benefits, costs and leakage effects of carbon reserve scenarios in the United States

Author

Listed:
  • Nepal, Prakash
  • Ince, Peter J.
  • Skog, Kenneth E.
  • Chang, Sun J.

Abstract

This study evaluated the potential effectiveness of future carbon reserve scenarios, where U.S. forest landowners would hypothetically be paid to sequester carbon on their timberland and forego timber harvests for 100 years. Scenarios featured direct payments to landowners of $0 (baseline), $5, $10, or $15 per metric ton of additional forest carbon sequestered on the set aside lands, with maximum annual expenditures of $3 billion. Results indicated that from 1513 to 6837 Tg (Teragrams) of additional carbon (as carbon dioxide equivalent, CO2e) would be sequestered on U.S. timberlands relative to the baseline case over the next 50 years (30–137 Tg CO2e annually). These projected amounts of sequestered carbon on timberlands take into account projected increases in timber removal and forest carbon losses on other timberlands (carbon leakage effects). Net effectiveness of carbon reserve scenarios in terms of overall net gain in timberland carbon stocks from 2010 to 2060 ranged from 0.29tCO2e net carbon increase for a payment of $5/tCO2e to the landowner (71% leakage), to 0.15tCO2e net carbon increase for a payment of $15/tCO2e to the landowner (85% leakage). A policy or program to buy carbon credits from landowners would need to discount additions to the carbon reserve by the estimated amount of leakage. In the scenarios evaluated, the timber set-asides reduced timberland area available for harvest up to 35% and available timber inventory up to 55%, relative to the baseline scenario over the next 50 years, resulting in projected changes in timber prices, harvest levels, and forest product revenues for the forest products sector.

Suggested Citation

  • Nepal, Prakash & Ince, Peter J. & Skog, Kenneth E. & Chang, Sun J., 2013. "Forest carbon benefits, costs and leakage effects of carbon reserve scenarios in the United States," Journal of Forest Economics, Elsevier, vol. 19(3), pages 286-306.
  • Handle: RePEc:eee:foreco:v:19:y:2013:i:3:p:286-306
    DOI: 10.1016/j.jfe.2013.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689913000238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfe.2013.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osborn, C. Tim & Llacuna, Felix & Lisenbigler, Michael, 1995. "Conservation Reserve Program: Enrollment Statistics for Signup Periods 1-12 and Fiscal Years 1986-93," Statistical Bulletin 154890, United States Department of Agriculture, Economic Research Service.
    2. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
    3. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    4. Babcock, Bruce A. & Lakshminarayan, P. G. & Wu, JunJie & Zilberman, David, 1996. "Economics of a Public Fund for Environmental Amenities (The)," Staff General Research Papers Archive 1065, Iowa State University, Department of Economics.
    5. Ince, Peter J. & Kramp, Andrew D. & Skog, Kenneth E. & Yoo, Do-il & Sample, V. Alaric, 2011. "Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption," Journal of Forest Economics, Elsevier, vol. 17(2), pages 142-156, April.
    6. David Zilberman, 1996. "The Economics of a Public Fund for Environmental Amenities: A Study of CRP Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 961-971.
    7. Brent Sohngen & Sandra Brown, 2008. "Extending timber rotations: carbon and cost implications," Climate Policy, Taylor & Francis Journals, vol. 8(5), pages 435-451, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filewod, Ben & McCarney, Geoff, 2023. "Avoiding leakage from nature-based offsets by design," LSE Research Online Documents on Economics 117928, London School of Economics and Political Science, LSE Library.
    2. Pan, Wenqi & Kim, Man-Keun & Ning, Zhuo & Yang, Hongqiang, 2020. "Carbon leakage in energy/forest sectors and climate policy implications using meta-analysis," Forest Policy and Economics, Elsevier, vol. 115(C).
    3. Cho, Seong-Hoon & Lee, Juhee & Roberts, Roland & Yu, Edward T. & Armsworth, Paul R., 2018. "Impact of market conditions on the effectiveness of payments for forest-based carbon sequestration," Forest Policy and Economics, Elsevier, vol. 92(C), pages 33-42.
    4. Filewod, Ben & McCarney, Geoff, 2023. "Avoiding leakage from nature-based offsets by design," LSE Research Online Documents on Economics 117927, London School of Economics and Political Science, LSE Library.
    5. Kallio, A. Maarit I. & Solberg, Birger & Käär, Liisa & Päivinen, Risto, 2018. "Economic impacts of setting reference levels for the forest carbon sinks in the EU on the European forest sector," Forest Policy and Economics, Elsevier, vol. 92(C), pages 193-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soh, Moonwon & Cho, Seong-Hoon & Yu, Edward & Boyer, Christopher & English, Burton, 2018. "Targeting Payments for Ecosystem Services Given Ecological and Economic Objectives," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266502, Southern Agricultural Economics Association.
    2. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    3. Haim, David & White, Eric M. & Alig, Ralph J., 2014. "Permanence of agricultural afforestation for carbon sequestration under stylized carbon markets in the U.S," Forest Policy and Economics, Elsevier, vol. 41(C), pages 12-21.
    4. Hongli Feng & Catherine L. Kling & Lyubov A. Kurkalova & Silvia Secchi & Philip W. Gassman, 2005. "The Conservation Reserve Program in the Presence of a Working Land Alternative: Implications for Environmental Quality, Program Participation, and Income Transfer," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(5), pages 1231-1238.
    5. Wu, JunJie & Zilberman, David & Babcock, Bruce A., 2001. "Environmental and Distributional Impacts of Conservation Targeting Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 41(3), pages 333-350, May.
    6. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    7. Jianhong Mu & Anne Wein & Bruce McCarl, 2015. "Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1041-1054, October.
    8. Yang, Wanhong & Khanna, Madhu & Farnsworth, Richard & Onal, Hayri, 2003. "Integrating economic, environmental and GIS modeling to target cost effective land retirement in multiple watersheds," Ecological Economics, Elsevier, vol. 46(2), pages 249-267, September.
    9. Jens Leth Hougaard & Kurt Nielsen & Athanasios Papakonstantinou, 2012. "A Simple Multi-attribute Yardstick Auction Without Prior Scoring," MSAP Working Paper Series 02_2012, University of Copenhagen, Department of Food and Resource Economics.
    10. Rose A Graves & Ryan D Haugo & Andrés Holz & Max Nielsen-Pincus & Aaron Jones & Bryce Kellogg & Cathy Macdonald & Kenneth Popper & Michael Schindel, 2020. "Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-30, April.
    11. Phillip Hone & Geoff Edwards & lain Fraser, 1999. "Agricultural Land Retirement and Biodiversity Policy," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 6(3), pages 211-224.
    12. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    13. Yang, Wanhong & Isik, Murat, 2003. "Integrating Farmer Decision-Making to Target Land Retirement Programs," 2003 Annual meeting, July 27-30, Montreal, Canada 22062, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Whitten, Stuart M., 2017. "Designing and implementing conservation tender metrics: Twelve core considerations," Land Use Policy, Elsevier, vol. 63(C), pages 561-571.
    15. Markus Groth, 2009. "The transferability and performance of payment-by-results biodiversity conservation procurement auctions: empirical evidence from northernmost Germany," Working Paper Series in Economics 119, University of Lüneburg, Institute of Economics.
    16. Banerjee, Simanti & Conte, Marc N., 2017. "Balancing Complexity and Rent-Seeking in Multi-Attribute Conservation Procurement Auctions: Evidence from a Laboratory Experiment," 2018 Allied Social Sciences Association (ASSA) Annual Meeting, January 5-7, 2018, Philadelphia, Pennsylvania 266293, Agricultural and Applied Economics Association.
    17. Werner Hediger, 2003. "Alternative policy measures and farmers' participation to improve rural landscapes and water quality: A conceptual framework," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 139(III), pages 333-350, September.
    18. Jacobs, Keri L. & Thurman, Walter N. & Marra, Michele C., 2011. "How Farmers Bid Into the Conservation Reserve Program: An Empirical Analysis of CRP Offers Data," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103675, Agricultural and Applied Economics Association.
    19. Khanna, Madhu & Isik, Murat & Zilberman, David, 2002. "Cost-effectiveness of alternative green payment policies for conservation technology adoption with heterogeneous land quality," Agricultural Economics, Blackwell, vol. 27(2), pages 157-174, August.
    20. Cattaneo, Andrea & Bucholtz, Shawn & Dewbre, Joe & Nickerson, Cynthia J., 2002. "The Crp Balancing Act: Trading Off Costs And Multiple Environmental Benefits," 2002 Annual meeting, July 28-31, Long Beach, CA 19810, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Keywords

    Forest carbon; Carbon reserve; Carbon price; Carbon leakage; Climate change mitigation; Mitigation cost; Present value; Set asides;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L73 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Forest Products
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:19:y:2013:i:3:p:286-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.