IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v72y2025ics1544612324016696.html
   My bibliography  Save this article

Does continuous good news still mean good news for market volatility?

Author

Listed:
  • Ding, Shaobin
  • Wang, Hongju
  • Sun, Qin

Abstract

Examining volatility asymmetry cyclically, volatility asymmetry may reverse in bull markets, volatility reacts more strongly to good news than to bad news, especially in emerging markets. We explain this phenomenon using extrapolated expectations: through extrapolated expectations, continuous good (bad) news amplifies asset price deviations from fundamentals, we modeled this for a more formal description. In the empirical analysis with Chinese data, we add the interaction term between extrapolated expected behavior and news shocks to the volatility equation, its coefficient is significantly positive in bull markets, suggesting extrapolated expectations amplify the impact of good news on volatility during bull markets.

Suggested Citation

  • Ding, Shaobin & Wang, Hongju & Sun, Qin, 2025. "Does continuous good news still mean good news for market volatility?," Finance Research Letters, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:finlet:v:72:y:2025:i:c:s1544612324016696
    DOI: 10.1016/j.frl.2024.106640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324016696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.106640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    2. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    3. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    4. Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "The Impact of Trades on Daily Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1241-1277.
    5. Ola Oluwa S. Yaya & Luis A. Gil‐Alana & Olanrewaju I. Shittu, 2015. "Fractional Integration and Asymmetric Volatility in European, American and Asian Bull and Bear Markets: Application to High‐frequency Stock Data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 20(3), pages 276-290, July.
    6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    7. Ericsson, Jan & Huang, Xiao & Mazzotta, Stefano, 2016. "Leverage and asymmetric volatility: The firm-level evidence," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 1-21.
    8. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    9. Brooks, Robert, 2007. "Power arch modelling of the volatility of emerging equity markets," Emerging Markets Review, Elsevier, vol. 8(2), pages 124-133, May.
    10. Adrian R. Pagan & Kirill A. Sossounov, 2003. "A simple framework for analysing bull and bear markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 23-46.
    11. Kumar, Alok, 2009. "Dynamic Style Preferences of Individual Investors and Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 607-640, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horpestad, Jone B. & Lyócsa, Štefan & Molnár, Peter & Olsen, Torbjørn B., 2019. "Asymmetric volatility in equity markets around the world," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 540-554.
    2. Muhammad Surajo Sanusi, 2017. "Investigating the sources of Black’s leverage effect in oil and gas stocks," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1318812-131, January.
    3. Chen, Shuning & Zhang, Wei & Feng, Xu & Xiong, Xiong, 2020. "Asymmetry of retail investors’ attention and asymmetric volatility: Evidence from China," Finance Research Letters, Elsevier, vol. 36(C).
    4. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    5. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, July.
    6. Refk Selmi & Jamal Bouoiyour, 2020. "Arab geopolitics in turmoil: Implications of Qatar-Gulf crisis for business," International Economics, CEPII research center, issue 161, pages 100-119.
    7. Ahmed, Mohamed S. & Alhadab, Mohammad, 2020. "Momentum, asymmetric volatility and idiosyncratic risk-momentum relation: Does technology-sector matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 78(C), pages 355-371.
    8. Ederington, Louis H. & Guan, Wei, 2010. "How asymmetric is U.S. stock market volatility?," Journal of Financial Markets, Elsevier, vol. 13(2), pages 225-248, May.
    9. Ramiah, Vikash & Xu, Xiaoming & Moosa, Imad A., 2015. "Neoclassical finance, behavioral finance and noise traders: A review and assessment of the literature," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 89-100.
    10. Pedro Piccoli & Newton C. A. da Costa & Wesley Vieira da Silva & June A. W. Cruz, 2018. "Investor sentiment and the risk–return tradeoff in the Brazilian market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 599-618, November.
    11. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    12. Sayim, Mustafa & Rahman, Hamid, 2015. "An examination of U.S. institutional and individual investor sentiment effect on the Turkish stock market," Global Finance Journal, Elsevier, vol. 26(C), pages 1-17.
    13. Newaz, Mohammad Khaleq & Park, Jin Suk, 2019. "The impact of trade intensity and Market characteristics on asymmetric volatility, spillovers and asymmetric spillovers: Evidence from the response of international stock markets to US shocks," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 79-94.
    14. Furuoka, Fumitaka & Yaya, OlaOluwa Simon & Ling, Pui Kiew & Al-Faryan, Mamdouh Abdulaziz Saleh & Islam, M. Nazmul, 2023. "Transmission of risks between energy and agricultural commodities: Frequency time-varying VAR, asymmetry and portfolio management," Resources Policy, Elsevier, vol. 81(C).
    15. Rangan Gupta & Mark Wohar, 2019. "The role of monetary policy uncertainty in predicting equity market volatility of the United Kingdom: evidence from over 150 years of data," Economics and Business Letters, Oviedo University Press, vol. 8(3), pages 138-146.
    16. Dzieliński, Michał & Rieger, Marc Oliver & Talpsepp, Tõnn, 2018. "Asymmetric attention and volatility asymmetry," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 59-67.
    17. Hanna, Alan J. & Turner, John D. & Walker, Clive B., 2017. "News media and investor sentiment over the long run," QUCEH Working Paper Series 2017-06, Queen's University Belfast, Queen's University Centre for Economic History.
    18. Jang, Jeewon & Kang, Jangkoo, 2019. "Probability of price crashes, rational speculative bubbles, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 222-247.
    19. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    20. Talpsepp, Tõnn & Rieger, Marc Oliver, 2010. "Explaining asymmetric volatility around the world," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 938-956, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:72:y:2025:i:c:s1544612324016696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.