IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Bivariate mixed normal GARCH models and out-of-sample hedge performances

  • Chung, Sang-Kuck
Registered author(s):

    This study compares bivariate mixed normal GARCH models with standard bivariate GARCH models in terms of the percentage variance reduction of the out-of-sample hedged portfolio and also statistical significance tests of performance improvements using Superior Predictive Ability statistics. All competing models are applied to corn and wheat futures and empirical results demonstrate that the standard BEKK-GARCH model significantly outperforms the other competing GARCH models at shorter horizons. However, as the hedge horizon is extended to longer than 10Â days, it is evident that the mixed normal BEKK-GARCH model is the best at the usual significance level of 5%.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B7CPP-4W2121D-1/2/1b5412b52d958cda8ff739215ba1e162
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Finance Research Letters.

    Volume (Year): 6 (2009)
    Issue (Month): 3 (September)
    Pages: 130-137

    as
    in new window

    Handle: RePEc:eee:finlet:v:6:y:2009:i:3:p:130-137
    Contact details of provider: Web page: http://www.elsevier.com/locate/frl

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    3. BAUWENS, Luc & HAFNER, Christian & ROMBOUTS, Jeroen, 2006. "Multivariate mixed normal conditional heteroskedasticity," CORE Discussion Papers 2006012, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    5. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 130-168.
    6. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 211-250.
    7. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    8. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2006. "Multivariate normal mixture GARCH," CFS Working Paper Series 2006/09, Center for Financial Studies (CFS).
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:6:y:2009:i:3:p:130-137. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.