IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v50y2022ics154461232200441x.html
   My bibliography  Save this article

The cost of delaying to invest: A Canadian perspective

Author

Listed:
  • Cleary, Sean
  • Willcott, Neal

Abstract

The Office of the Superintendent of Financial Institutions, the Bank of Canada, and several key financial institutions recently published a report examining transitional risks to the Canadian economy under various climate change scenarios. However, their results leave an important void with respect to the impact of physical risks and the associated costs of climate change for Canada, such as the loss of biodiversity, sea-level rise, and infrastructure damage due to fires and floods, etc. We fill this void by updating the Dynamic Integrated Climate and Economy model developed by 2018 Nobel Laureate William Nordhaus to project physical damages due to climate change for Canada. Our results illustrate stark differences in physical costs under various warming scenarios, highlighting the importance of taking action to mitigate climate change. We find that undertaking the required investments to reduce greenhouse gas (GHG) emissions more than pays for itself in terms of avoided physical damage alone.

Suggested Citation

  • Cleary, Sean & Willcott, Neal, 2022. "The cost of delaying to invest: A Canadian perspective," Finance Research Letters, Elsevier, vol. 50(C).
  • Handle: RePEc:eee:finlet:v:50:y:2022:i:c:s154461232200441x
    DOI: 10.1016/j.frl.2022.103242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S154461232200441X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    3. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    4. Nordhaus, William D, 1993. "Optimal Greenhouse-Gas Reductions and Tax Policy in the "Dice" Model," American Economic Review, American Economic Association, vol. 83(2), pages 313-317, May.
    5. Thiago G. Ramires & Luiz R. Nakamura & Ana J. Righetto & Andréa C. Konrath & Carlos A. B. Pereira, 2021. "Incorporating Clustering Techniques into GAMLSS," Stats, MDPI, vol. 4(4), pages 1-15, November.
    6. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161.
    7. Alison McKay & Matthew C. Davis & Helen P. N. Hughes & Rebecca L. Pieniazek & Mark A. Robinson, 2021. "Designing Socio-technical Systems," Springer Books, in: Gary S. Metcalf & Kyoichi Kijima & Hiroshi Deguchi (ed.), Handbook of Systems Sciences, chapter 18, pages 473-499, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    2. Bovari, Emmanuel & Giraud, Gaël & Mc Isaac, Florent, 2018. "Coping With Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming," Ecological Economics, Elsevier, vol. 147(C), pages 383-398.
    3. Lint Barrage, 2019. "The Nobel Memorial Prize for William D. Nordhaus," Scandinavian Journal of Economics, Wiley Blackwell, vol. 121(3), pages 884-924, July.
    4. Traeger, Christian, 2021. "ACE - Analytic Climate Economy," CEPR Discussion Papers 15968, C.E.P.R. Discussion Papers.
    5. Moritz A. Drupp & Martin C. Hänsel, 2021. "Relative Prices and Climate Policy: How the Scarcity of Nonmarket Goods Drives Policy Evaluation," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 168-201, February.
    6. Sareh Vosooghi & Maria Arvaniti & Frederick Van Der Ploeg, 2022. "Self-enforcing climate coalitions for farsighted countries: integrated analysis of heterogeneous countries," Economics Series Working Papers 971, University of Oxford, Department of Economics.
    7. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    8. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Post-Print hal-03027150, HAL.
    9. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    10. Emmanuel Bovari & Oskar Lecuyer & Florent Mc Isaac, 2018. "Debt and damages: What are the chances of staying under the 2C warming threshold?," International Economics, CEPII research center, issue 155, pages 92-108.
    11. Gaël Giraud & Florent MCISAAC & Emmanuel BOVARI & Ekaterina ZATSEPINA, 2017. "Coping with the Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming. Updated version: January 2017," Working Paper b6f3f098-ed24-44bf-9cdd-1, Agence française de développement.
    12. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Management Science, INFORMS, vol. 63(3), pages 749-765, March.
    13. Gaël Giraud & Florent MCISAAC & Emmanuel BOVARI, 2018. "Coping with the Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming - Updated version dated July 2017," Working Paper 987f5d77-9601-4865-9ce1-4, Agence française de développement.
    14. Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2021. "Green technologies, complementarities, and policy," SEEDS Working Papers 1021, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2021.
    15. Stephen Keen & Timothy M. Lenton & Antoine Godin & Devrim Yilmaz & Matheus Grasselli & Timothy J. Garrett, 2021. "Economists' erroneous estimates of damages from climate change," Papers 2108.07847, arXiv.org.
    16. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    17. Lecocq, Franck & Shalizi, Zmarak, 2007. "How might climate change affect economic growth in developing countries ? a review of the growth literature with a climate lens," Policy Research Working Paper Series 4315, The World Bank.
    18. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    19. Huntington, Hillard G., 2021. "Model evaluation for policy insights: Reflections on the forum process," Energy Policy, Elsevier, vol. 156(C).
    20. Valentin Zelenyuk & Shirong Zhao, 2023. "Further Improvements of Finite Sample Approximation of Central Limit Theorems for Weighted and Unweighted Malmquist Productivity Indices," CEPA Working Papers Series WP042023, School of Economics, University of Queensland, Australia.

    More about this item

    Keywords

    Climate change; Physical risk; Sustainable investments; Canada;
    All these keywords.

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:50:y:2022:i:c:s154461232200441x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.