IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v31y2019icp119-129.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Quantile coherency networks of international stock markets

Author

Listed:
  • Baumöhl, Eduard
  • Shahzad, Syed Jawad Hussain

Abstract

This paper uses the novel quantile coherency approach to examine the tail dependence network of 49 international stock markets in the frequency domain. We find that geographical proximity and state of market development are important factors in stock markets networks. Both the short- and long-run connectedness significantly increased after the global financial crisis and spillover is higher during bearish market states, highlighting the possibility of contagion effect mainly among developed markets. Frontier and emerging markets are relatively less connected. These findings have implications for international equity market diversification and risk management.

Suggested Citation

  • Baumöhl, Eduard & Shahzad, Syed Jawad Hussain, 2019. "Quantile coherency networks of international stock markets," Finance Research Letters, Elsevier, vol. 31(C), pages 119-129.
  • Handle: RePEc:eee:finlet:v:31:y:2019:i:c:p:119-129
    DOI: 10.1016/j.frl.2019.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612319302089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2019.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    2. Baumöhl, Eduard & Kočenda, Evžen & Lyócsa, Štefan & Výrost, Tomáš, 2018. "Networks of volatility spillovers among stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1555-1574.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Gazi I. Kara & Mary Tian & Margaret Yellen, 2015. "Taxonomy of Studies on Interconnectedness," FEDS Notes 2015-07-31, Board of Governors of the Federal Reserve System (U.S.).
    5. Fenghua Wen & Xin Yang & Wei‐Xing Zhou, 2019. "Tail dependence networks of global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 558-567, January.
    6. Baumöhl, Eduard, 2019. "Are cryptocurrencies connected to forex? A quantile cross-spectral approach," Finance Research Letters, Elsevier, vol. 29(C), pages 363-372.
    7. Li, Wenwei & Hommel, Ulrich & Paterlini, Sandra, 2018. "Network topology and systemic risk: Evidence from the Euro Stoxx market," Finance Research Letters, Elsevier, vol. 27(C), pages 105-112.
    8. Boubaker, Sabri & Jouini, Jamel & Lahiani, Amine, 2016. "Financial contagion between the US and selected developed and emerging countries: The case of the subprime crisis," The Quarterly Review of Economics and Finance, Elsevier, vol. 61(C), pages 14-28.
    9. Boubaker, Sabri & Jouini, Jamel, 2014. "Linkages between emerging and developed equity markets: Empirical evidence in the PMG framework," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 322-335.
    10. Mensi, Walid & Boubaker, Ferihane Zaraa & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2018. "Dynamic volatility spillovers and connectedness between global, regional, and GIPSI stock markets," Finance Research Letters, Elsevier, vol. 25(C), pages 230-238.
    11. Coelho, Ricardo & Gilmore, Claire G. & Lucey, Brian & Richmond, Peter & Hutzler, Stefan, 2007. "The evolution of interdependence in world equity markets—Evidence from minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 455-466.
    12. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    13. Shahzad, Syed Jawad Hussain & Hernandez, Jose Areola & Rehman, Mobeen Ur & Al-Yahyaee, Khamis Hamed & Zakaria, Muhammad, 2018. "A global network topology of stock markets: Transmitters and receivers of spillover effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2136-2153.
    14. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    15. repec:oup:emjrnl:v:22:y:2019:i:2:p:131-152. is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yizhuo Zhang & Rui Chen & Ding Ma, 2020. "A Weighted and Directed Perspective of Global Stock Market Connectedness: A Variance Decomposition and GERGM Framework," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    2. Zhang, Weiping & Zhuang, Xintian & Wu, Dongmei, 2020. "Spatial connectedness of volatility spillovers in G20 stock markets: Based on block models analysis," Finance Research Letters, Elsevier, vol. 34(C).
    3. Wang, Dan & Huang, Wei-Qiang, 2021. "Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhai, Kaikai, 2021. "Multiscale and partial correlation networks analysis of risk connectedness in global equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    6. Yuan, Ying & Du, Xinyu, 2023. "Dynamic spillovers across global stock markets during the COVID-19 pandemic: Evidence from jumps and higher moments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    7. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    8. Yang, Xin & Wen, Shigang & Zhao, Xian & Huang, Chuangxia, 2020. "Systemic importance of financial institutions: A complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Extreme spillovers across Asian-Pacific currencies: A quantile-based analysis," International Review of Financial Analysis, Elsevier, vol. 72(C).
    10. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    11. Zaghum Umar & Oluwasegun Babatunde Adekoya & Mariya Gubareva & Sabri Boubaker, 2024. "Returns and volatility connectedness among the Eurozone equity markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3103-3122, July.
    12. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    13. Ashfaq, Saleha & Tang, Yong & Maqbool, Rashid, 2020. "Dynamics of spillover network among oil and leading Asian oil trading countries’ stock markets," Energy, Elsevier, vol. 207(C).
    14. Kakran, Shubham & Kumari, Vineeta & Bajaj, Parminder Kaur & Sidhu, Arpit, 2024. "Exploring crisis-driven return spillovers in APEC stock markets: A frequency dynamics analysis," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    15. Ki-Hong Choi & Ron P. McIver & Salvatore Ferraro & Lei Xu & Sang Hoon Kang, 2021. "Dynamic volatility spillover and network connectedness across ASX sector markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(4), pages 677-691, October.
    16. Borjigin, Sumuya & Gao, Ting & Sun, Yafei & An, Biao, 2020. "For evil news rides fast, while good news baits later?—A network based analysis in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Ren, Yinghua & Zhao, Wanru & You, Wanhai & Zhu, Huiming, 2022. "Multiscale features of extreme risk spillover networks among global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    18. Chowdhury, Biplob & Dungey, Mardi & Kangogo, Moses & Sayeed, Mohammad Abu & Volkov, Vladimir, 2019. "The changing network of financial market linkages: The Asian experience," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 71-92.
    19. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    20. Deev, Oleg & Lyócsa, Štefan, 2020. "Connectedness of financial institutions in Europe: A network approach across quantiles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    More about this item

    Keywords

    Quantile coherency; Networks; Stock markets; Extreme negative returns; Financial crisis;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • G01 - Financial Economics - - General - - - Financial Crises
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:31:y:2019:i:c:p:119-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.