IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp240-249.html
   My bibliography  Save this article

Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models

Author

Listed:
  • Jannelli, E.
  • Minutillo, M.
  • Cozzolino, R.
  • Falcucci, G.

Abstract

The aim of the this work has been to evaluate the performance of a small-size CCHP (Combined Cooling Heating and Power) system based on the integration of 20 kW Lombardini diesel engine and a double effect water-LiBr absorption chiller.

Suggested Citation

  • Jannelli, E. & Minutillo, M. & Cozzolino, R. & Falcucci, G., 2014. "Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models," Energy, Elsevier, vol. 65(C), pages 240-249.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:240-249
    DOI: 10.1016/j.energy.2013.11.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421301044X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schicktanz, M.D. & Wapler, J. & Henning, H.-M., 2011. "Primary energy and economic analysis of combined heating, cooling and power systems," Energy, Elsevier, vol. 36(1), pages 575-585.
    2. Arcuri, P. & Florio, G. & Fragiacomo, P., 2007. "A mixed integer programming model for optimal design of trigeneration in a hospital complex," Energy, Elsevier, vol. 32(8), pages 1430-1447.
    3. Al-Sulaiman, Fahad A. & Hamdullahpur, Feridun & Dincer, Ibrahim, 2011. "Performance comparison of three trigeneration systems using organic rankine cycles," Energy, Elsevier, vol. 36(9), pages 5741-5754.
    4. Roque Díaz, P. & Benito, Y.R. & Parise, J.A.R., 2010. "Thermoeconomic assessment of a multi-engine, multi-heat-pump CCHP (combined cooling, heating and power generation) system – A case study," Energy, Elsevier, vol. 35(9), pages 3540-3550.
    5. Somers, C. & Mortazavi, A. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2011. "Modeling water/lithium bromide absorption chillers in ASPEN Plus," Applied Energy, Elsevier, vol. 88(11), pages 4197-4205.
    6. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    7. Chicco, Gianfranco & Mancarella, Pierluigi, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators," Energy, Elsevier, vol. 33(3), pages 410-417.
    8. Ge, Y.T. & Tassou, S.A. & Chaer, I. & Suguartha, N., 2009. "Performance evaluation of a tri-generation system with simulation and experiment," Applied Energy, Elsevier, vol. 86(11), pages 2317-2326, November.
    9. Martínez-Lera, S. & Ballester, J., 2010. "A novel method for the design of CHCP (combined heat, cooling and power) systems for buildings," Energy, Elsevier, vol. 35(7), pages 2972-2984.
    10. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    11. Wang, Yaodong & Huang, Ye & Chiremba, Elijah & Roskilly, Anthony P. & Hewitt, Neil & Ding, Yulong & Wu, Dawei & Yu, Hongdong & Chen, Xiangping & Li, Yapeng & Huang, Jincheng & Wang, Ruzhu & Wu, Jingyi, 2011. "An investigation of a household size trigeneration running with hydrogen," Applied Energy, Elsevier, vol. 88(6), pages 2176-2182, June.
    12. Mancarella, Pierluigi & Chicco, Gianfranco, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases," Energy, Elsevier, vol. 33(3), pages 418-430.
    13. Ho, J.C. & Chua, K.J. & Chou, S.K., 2004. "Performance study of a microturbine system for cogeneration application," Renewable Energy, Elsevier, vol. 29(7), pages 1121-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    3. Fong, K.F. & Lee, C.K., 2015. "Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong," Applied Energy, Elsevier, vol. 160(C), pages 793-801.
    4. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
    5. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto, 2017. "Thermodynamic sensitivity analysis of a novel trigeneration thermodynamic cycle with two-phase expanders and two-phase compressors," Energy, Elsevier, vol. 127(C), pages 335-350.
    6. Santoso Wibowo & Srimannarayana Grandhi, 2018. "Multicriteria Assessment of Combined Heat and Power Systems," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    7. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    8. Wu, J.Y. & Wang, J.L. & Li, S. & Wang, R.Z., 2014. "Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller," Energy, Elsevier, vol. 68(C), pages 444-453.
    9. Muhammad Shahzad Nazir & Ahmed N. Abdalla & Ahmed Sayed M. Metwally & Muhammad Imran & Patrizia Bocchetta & Muhammad Sufyan Javed, 2022. "Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    10. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    11. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    12. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    13. Wang, Jialong & Wu, Jingyin & Wang, Hongbin, 2015. "Experimental investigation of a dual-source powered absorption chiller based on gas engine waste heat and solar thermal energy," Energy, Elsevier, vol. 88(C), pages 680-689.
    14. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    15. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    16. Briola, Stefano & Gabbrielli, Roberto & Fino, Andrea & Bischi, Aldo & Di Marco, Paolo, 2019. "Working fluid selection and extensive sensitivity analysis for the thermodynamic optimization of a novel trigeneration cycle with two-phase expanders and compressors," Energy, Elsevier, vol. 179(C), pages 709-726.
    17. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Dynamic performance comparison of different cascade waste heat recovery systems for internal combustion engine in combined cooling, heating and power," Applied Energy, Elsevier, vol. 260(C).
    18. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    19. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    2. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    3. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    4. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    5. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    6. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    7. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    8. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    9. Miao Li & Hailin Mu & Huanan Li, 2013. "Analysis and Assessments of Combined Cooling, Heating and Power Systems in Various Operation Modes for a Building in China, Dalian," Energies, MDPI, vol. 6(5), pages 1-22, May.
    10. Chua, K.J. & Yang, W.M. & Wong, T.Z. & Ho, C.A., 2012. "Integrating renewable energy technologies to support building trigeneration – A multi-criteria analysis," Renewable Energy, Elsevier, vol. 41(C), pages 358-367.
    11. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    12. Simeoni, Patrizia & Nardin, Gioacchino & Ciotti, Gellio, 2018. "Planning and design of sustainable smart multi energy systems. The case of a food industrial district in Italy," Energy, Elsevier, vol. 163(C), pages 443-456.
    13. Ebrahimi, Masood & Keshavarz, Ali, 2013. "Sizing the prime mover of a residential micro-combined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates," Energy, Elsevier, vol. 54(C), pages 291-301.
    14. Gao, Penghui & Dai, Yanjun & Tong, YenWah & Dong, Pengwei, 2015. "Energy matching and optimization analysis of waste to energy CCHP (combined cooling, heating and power) system with exergy and energy level," Energy, Elsevier, vol. 79(C), pages 522-535.
    15. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    16. Frangopoulos, Christos A., 2012. "A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive," Energy, Elsevier, vol. 45(1), pages 52-61.
    17. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Xutao & Zhang, Chunfa, 2011. "Sensitivity analysis of optimal model on building cooling heating and power system," Applied Energy, Elsevier, vol. 88(12), pages 5143-5152.
    18. Monica Costea & Michel Feidt, 2022. "A Review Regarding Combined Heat and Power Production and Extensions: Thermodynamic Modelling and Environmental Impact," Energies, MDPI, vol. 15(23), pages 1-25, November.
    19. Hou, Hongjuan & Wu, Jiwen & Ding, Zeyu & Yang, Bo & Hu, Eric, 2021. "Performance analysis of a solar-assisted combined cooling, heating and power system with an improved operation strategy," Energy, Elsevier, vol. 227(C).
    20. Smith, Amanda D. & Mago, Pedro J. & Fumo, Nelson, 2011. "Emissions spark spread and primary energy spark spread – Environmental and energy screening parameters for combined heating and power systems," Applied Energy, Elsevier, vol. 88(11), pages 3891-3897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:240-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.