IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p315-d129880.html
   My bibliography  Save this article

Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller

Author

Listed:
  • Raffaello Cozzolino

    (Department of Engineering, Niccolò Cusano University, via Don Carlo Gnocchi 3, 00166 Rome, Italy)

Abstract

The aim of this work has been to evaluate the energetic feasibility and the performances of a novel residential micro-Combined Cooling, Heating and Power (CCHP) system, based on low temperature proton exchange membrane fuel cell (PEMFC) power unit and half effect lithium bromide absorption chiller. This integrated system has been designed to produce both electric, thermal and cooling power by recovering heat from the fuel cell power unit cooling system. The analysis has been conducted by using numerical simulations: the PEMFC power unit and the absorption chiller have been modeled by means of one-dimensional and thermochemical models, respectively, and by means of available experimental and literature reference data, has been performed the validation. The performance parameters such as: the energy utilization factor (EUF), the exergy utilization factor (ExUF) and the trigeneration primary energy saving (TPES), have been used to analyzed the performances of the system. The numerical results showed a good performance in terms of energy and ExUF, in the whole operating field of the trigeneration system. Furthermore, the highest ExUF values are obtained for the minimum evaporator temperature (4 °C) and minimum condenser temperature (27 °C) of the absorption chiller. The calculated values of TPES for the CCHP mode, ranges from −0.07 to 0.19, thus, the system has good performance in a wide operating range, but the better performance can be achieved at lower loads.

Suggested Citation

  • Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:315-:d:129880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schicktanz, M.D. & Wapler, J. & Henning, H.-M., 2011. "Primary energy and economic analysis of combined heating, cooling and power systems," Energy, Elsevier, vol. 36(1), pages 575-585.
    2. Jannelli, E. & Minutillo, M. & Cozzolino, R. & Falcucci, G., 2014. "Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models," Energy, Elsevier, vol. 65(C), pages 240-249.
    3. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    4. Tribioli, Laura & Cozzolino, Raffaello & Chiappini, Daniele & Iora, Paolo, 2016. "Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing," Applied Energy, Elsevier, vol. 184(C), pages 140-154.
    5. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    6. Lozano, M.A. & Carvalho, M. & Serra, L.M., 2009. "Operational strategy and marginal costs in simple trigeneration systems," Energy, Elsevier, vol. 34(11), pages 2001-2008.
    7. Jannelli, Elio & Minutillo, Mariagiovanna & Perna, Alessandra, 2013. "Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances," Applied Energy, Elsevier, vol. 108(C), pages 82-91.
    8. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    9. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    10. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    11. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    12. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
    13. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Sung Kang & Yoon Hyuk Shin, 2019. "Analytical Study of Tri-Generation System Integrated with Thermal Management Using HT-PEMFC Stack," Energies, MDPI, vol. 12(16), pages 1-17, August.
    2. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    3. Leveni, Martina & Manfrida, Giampaolo & Cozzolino, Raffaello & Mendecka, Barbara, 2019. "Energy and exergy analysis of cold and power production from the geothermal reservoir of Torre Alfina," Energy, Elsevier, vol. 180(C), pages 807-818.
    4. Assareh, Ehsanolah & Mousavi Asl, Seyed Sajad & Agarwal, Neha & Ahmadinejad, Mehrdad & Ghodrat, Maryam & Lee, Moonyong, 2023. "New optimized configuration for a hybrid PVT solar/electrolyzer/absorption chiller system utilizing the response surface method as a machine learning technique and multi-objective optimization," Energy, Elsevier, vol. 281(C).
    5. Dumitrascu Gheorghe & Feidt Michel & Popescu Aristotel & Grigorean Stefan, 2019. "Endoreversible Trigeneration Cycle Design Based on Finite Physical Dimensions Thermodynamics," Energies, MDPI, vol. 12(16), pages 1-21, August.
    6. Geonhui Gwak & Minwoo Kim & Dohwan Kim & Muhammad Faizan & Kyeongmin Oh & Jaeseung Lee & Jaeyoo Choi & Nammin Lee & Kisung Lim & Hyunchul Ju, 2019. "Performance and Efficiency Analysis of an HT-PEMFC System with an Absorption Chiller for Tri-Generation Applications," Energies, MDPI, vol. 12(5), pages 1-21, March.
    7. Barbara Mendecka & Lidia Lombardi & Paweł Gładysz & Wojciech Stanek, 2018. "Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy," Energies, MDPI, vol. 11(4), pages 1-20, March.
    8. Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
    9. Yaokui Gao & Yong Hu & Deliang Zeng & Jizhen Liu & Feng Chen, 2018. "Modeling and Control of a Combined Heat and Power Unit with Two-Stage Bypass," Energies, MDPI, vol. 11(6), pages 1-20, May.
    10. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    2. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    3. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    4. Jannelli, E. & Minutillo, M. & Cozzolino, R. & Falcucci, G., 2014. "Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models," Energy, Elsevier, vol. 65(C), pages 240-249.
    5. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    6. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    7. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    8. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    9. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    10. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    11. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    12. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    13. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    14. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    15. Fong, K.F. & Lee, C.K., 2015. "Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong," Applied Energy, Elsevier, vol. 160(C), pages 793-801.
    16. Hyun Sung Kang & Myong-Hwan Kim & Yoon Hyuk Shin, 2020. "Thermodynamic Modeling and Performance Analysis of a Combined Power Generation System Based on HT-PEMFC and ORC," Energies, MDPI, vol. 13(23), pages 1-18, November.
    17. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    18. Lu, Shuai & Gu, Wei & Zhou, Jinhui & Zhang, Xuesong & Wu, Chenyu, 2018. "Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy," Energy, Elsevier, vol. 152(C), pages 358-370.
    19. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    20. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:315-:d:129880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.