IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i7p1121-1133.html
   My bibliography  Save this article

Performance study of a microturbine system for cogeneration application

Author

Listed:
  • Ho, J.C.
  • Chua, K.J.
  • Chou, S.K.

Abstract

A microturbine cogeneration system providing electrical power and space cooling to a laboratory space is presented. The system comprises a microturbine, a lithium bromide absorption chiller, heat exchangers and a propane fuel supply system. Results from the performance tests conducted on the cogeneration system showed that the microturbine electrical efficiency was 21% at near full load of 24 kW whilst the chiller operated with COP ranging from 0.5 to 0.58, depending on the electrical output. The overall system efficiency ranged from 40% to 49%. In addition, the performance of the cogeneration system under varying heat load in the cooling space and longer microturbine operating period were also studied.

Suggested Citation

  • Ho, J.C. & Chua, K.J. & Chou, S.K., 2004. "Performance study of a microturbine system for cogeneration application," Renewable Energy, Elsevier, vol. 29(7), pages 1121-1133.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:7:p:1121-1133
    DOI: 10.1016/j.renene.2003.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103004002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liaw, Kim Leong & Kurnia, Jundika C. & Lai, Wen Kang & Ong, Khai Chuin & Zar, Muhammad Aliff B. Mohd Ali & Muhammad, M. Fadhli B. & Firmansyah,, 2023. "Optimization of a novel impulse gas turbine nozzle and blades design utilizing Taguchi method for micro-scale power generation," Energy, Elsevier, vol. 282(C).
    2. Myat, Aung & Thu, Kyaw & Kim, Young Deuk & Saha, Bidyut Baran & Choon Ng, Kim, 2012. "Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants," Energy, Elsevier, vol. 46(1), pages 493-521.
    3. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    4. de Beer, J.H. & le Roux, W.G. & Sciacovelli, A. & Meyer, J.P., 2023. "Effect of a novel cooling window on a recuperated solar-dish Brayton cycle," Renewable Energy, Elsevier, vol. 208(C), pages 465-480.
    5. Chua, K.J. & Yang, W.M. & Wong, T.Z. & Ho, C.A., 2012. "Integrating renewable energy technologies to support building trigeneration – A multi-criteria analysis," Renewable Energy, Elsevier, vol. 41(C), pages 358-367.
    6. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Chris Underwood & Bobo Ng & Francis Yik, 2015. "Scheduling of Multiple Chillers in Trigeneration Plants," Energies, MDPI, vol. 8(10), pages 1-25, October.
    8. Verstraete, Dries & Bowkett, Carlos, 2015. "Impact of heat transfer on the performance of micro gas turbines," Applied Energy, Elsevier, vol. 138(C), pages 445-449.
    9. Jannelli, E. & Minutillo, M. & Cozzolino, R. & Falcucci, G., 2014. "Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models," Energy, Elsevier, vol. 65(C), pages 240-249.
    10. Stathopoulos, P. & Paschereit, C.O., 2015. "Retrofitting micro gas turbines for wet operation. A way to increase operational flexibility in distributed CHP plants," Applied Energy, Elsevier, vol. 154(C), pages 438-446.
    11. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    12. Włodarski, Wojciech, 2018. "Experimental investigations and simulations of the microturbine unit with permanent magnet generator," Energy, Elsevier, vol. 158(C), pages 59-71.
    13. Rachtan, W. & Malinowski, L., 2013. "An approximate expression for part-load performance of a microturbine combined heat and power system heat recovery unit," Energy, Elsevier, vol. 51(C), pages 146-153.
    14. Delattin, Frank & Bram, Svend & Knoops, Sofie & De Ruyck, Jacques, 2008. "Effects of steam injection on microturbine efficiency and performance," Energy, Elsevier, vol. 33(2), pages 241-247.
    15. Macedo, Wilson N. & Monteiro, Luís G. & Corgozinho, Ivan M. & Macêdo, Emanuel N. & Rendeiro, Gonçalo & Braga, Wilson & Bacha, Lucas, 2016. "Biomass based microturbine system for electricity generation for isolated communities in amazon region," Renewable Energy, Elsevier, vol. 91(C), pages 323-333.
    16. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2014. "Dynamic distributed generation dispatch strategy for lowering the cost of building energy," Applied Energy, Elsevier, vol. 123(C), pages 196-208.
    17. Thu, Kyaw & Saha, Bidyut Baran & Chua, Kian Jon & Bui, Thuan Duc, 2016. "Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications," Applied Energy, Elsevier, vol. 178(C), pages 600-608.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:7:p:1121-1133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.