IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v62y2013icp132-141.html
   My bibliography  Save this article

Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and German conditions

Author

Listed:
  • Tańczuk, Mariusz
  • Ulbrich, Roman

Abstract

Technical and economic analysis of construction of an ORC (Organic Rankine Cycle) cogeneration plant under Polish and German conditions is the subject of the paper. The analyzed plant consists of an ORC module or a CHP (Combined Heat and Power) gas engine unit and gas boilers. Taking into account different technical configurations (operating mode as well as capacity due to different sizing of the units) on one side, and different financial support mechanisms (mainly on the operating level) on the other side, the comparative cost-benefits analysis has been made. On the basis of the technical analysis, the basic economical indexes: NPV (net present value) and payback times have been derived for each analyzed scenario and the results have been compared and discussed. The sensitivity of NPV for tags prices has been also examined and the results have been commented.

Suggested Citation

  • Tańczuk, Mariusz & Ulbrich, Roman, 2013. "Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and G," Energy, Elsevier, vol. 62(C), pages 132-141.
  • Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:132-141
    DOI: 10.1016/j.energy.2013.09.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008050
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mario Ragwitz & Claus Huber & Gustav Resch, 2007. "Promotion of renewable energy sources: effects on innovation," International Journal of Public Policy, Inderscience Enterprises Ltd, vol. 2(1/2), pages 32-56.
    2. Taljan, Gregor & Verbič, Gregor & Pantoš, Miloš & Sakulin, Manfred & Fickert, Lothar, 2012. "Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage," Renewable Energy, Elsevier, vol. 41(C), pages 29-38.
    3. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    4. DiGenova, Kevin J. & Botros, Barbara B. & Brisson, J.G., 2013. "Method for customizing an organic Rankine cycle to a complex heat source for efficient energy conversion, demonstrated on a Fischer Tropsch plant," Applied Energy, Elsevier, vol. 102(C), pages 746-754.
    5. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
    6. Liu, Bo & Rivière, Philippe & Coquelet, Christophe & Gicquel, Renaud & David, Franck, 2012. "Investigation of a two stage Rankine cycle for electric power plants," Applied Energy, Elsevier, vol. 100(C), pages 285-294.
    7. Kuo, Chi-Ron & Hsu, Sung-Wei & Chang, Kai-Han & Wang, Chi-Chuan, 2011. "Analysis of a 50kW organic Rankine cycle system," Energy, Elsevier, vol. 36(10), pages 5877-5885.
    8. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2013. "Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery," Energy, Elsevier, vol. 58(C), pages 448-457.
    9. Badami, M. & Mura, M. & Campanile, P. & Anzioso, F., 2008. "Design and performance evaluation of an innovative small scale combined cycle cogeneration system," Energy, Elsevier, vol. 33(8), pages 1264-1276.
    10. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    11. Osborne, Michael J., 2010. "A resolution to the NPV-IRR debate?," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(2), pages 234-239, May.
    12. Danon, Gradimir & Furtula, Mladen & Mandić, Marija, 2012. "Possibilities of implementation of CHP (combined heat and power) in the wood industry in Serbia," Energy, Elsevier, vol. 48(1), pages 169-176.
    13. del Río, Pablo & Bleda, Mercedes, 2012. "Comparing the innovation effects of support schemes for renewable electricity technologies: A function of innovation approach," Energy Policy, Elsevier, vol. 50(C), pages 272-282.
    14. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    15. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    16. Desai, Nishith B. & Bandyopadhyay, Santanu, 2009. "Process integration of organic Rankine cycle," Energy, Elsevier, vol. 34(10), pages 1674-1686.
    17. Stoppato, Anna, 2012. "Energetic and economic investigation of the operation management of an Organic Rankine Cycle cogeneration plant," Energy, Elsevier, vol. 41(1), pages 3-9.
    18. Vlysidis, Anestis & Binns, Michael & Webb, Colin & Theodoropoulos, Constantinos, 2011. "A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals," Energy, Elsevier, vol. 36(8), pages 4671-4683.
    19. Batlle, C. & Pérez-Arriaga, I.J. & Zambrano-Barragán, P., 2012. "Regulatory design for RES-E support mechanisms: Learning curves, market structure, and burden-sharing," Energy Policy, Elsevier, vol. 41(C), pages 212-220.
    20. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    21. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:energy:v:150:y:2018:i:c:p:601-616 is not listed on IDEAS
    2. repec:eee:energy:v:150:y:2018:i:c:p:253-261 is not listed on IDEAS
    3. repec:eee:energy:v:142:y:2018:i:c:p:666-677 is not listed on IDEAS
    4. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    5. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
    6. Piwowar, Arkadiusz & Dzikuć, Maciej, 2016. "Outline of the economic and technical problems associated with the co-combustion of biomass in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 415-420.
    7. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, Open Access Journal, vol. 10(3), pages 1-18, March.
    8. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    9. repec:eee:energy:v:139:y:2017:i:c:p:76-88 is not listed on IDEAS
    10. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, Open Access Journal, vol. 9(7), pages 1-18, June.
    11. repec:eee:renene:v:119:y:2018:i:c:p:262-281 is not listed on IDEAS
    12. Meinel, Dominik & Wieland, Christoph & Spliethoff, Hartmut, 2014. "Economic comparison of ORC (Organic Rankine cycle) processes at different scales," Energy, Elsevier, vol. 74(C), pages 694-706.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:62:y:2013:i:c:p:132-141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.