IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v59y2013icp38-49.html
   My bibliography  Save this article

An assessment of the energy-saving potential in China's petroleum refining industry from a technical perspective

Author

Listed:
  • Liu, Xiaoyu
  • Chen, Dingjiang
  • Zhang, Wenjun
  • Qin, Weizhong
  • Zhou, Wenji
  • Qiu, Tong
  • Zhu, Bing

Abstract

As a major contributor to productivity and employment in China, the petroleum refining industry consumes approximately 15% of industrial fuel oil and 10% of industrial coal. Given this energy-intensive characteristic, cost-effective investments for energy-efficient technologies may be a useful strategy to improve the competitiveness of China's refining industry. More importantly, this approach may alleviate the environmental problems China faces. This paper addresses the challenges posed by a highly complex refining system, incomplete industrial information, and the absence of a widely accepted evaluation method. This study models and analyzes the energy-savings potential for refining and conversion processes in the context of technological change. The results indicate that upgrading process heaters have been a priority during recent years, but heat recovery and advanced process control systems will gradually begin to dominate the technological marketplace in the long term. Current technology policies will result in approximately 2.7 × 108 GJ of energy savings by 2020, keeping the average energy consumption of refineries within 57 kg oil equivalent (kgoe)/t-feed. If a cap-and-trade scheme is introduced in the future, a further reduction of up to 10% can be achieved. Various specific barriers that impede the realization of potential goals are also addressed in this study.

Suggested Citation

  • Liu, Xiaoyu & Chen, Dingjiang & Zhang, Wenjun & Qin, Weizhong & Zhou, Wenji & Qiu, Tong & Zhu, Bing, 2013. "An assessment of the energy-saving potential in China's petroleum refining industry from a technical perspective," Energy, Elsevier, vol. 59(C), pages 38-49.
  • Handle: RePEc:eee:energy:v:59:y:2013:i:c:p:38-49
    DOI: 10.1016/j.energy.2013.07.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Bing & Zhou, Wenji & Hu, Shanying & Li, Qiang & Griffy-Brown, Charla & Jin, Yong, 2010. "CO2 emissions and reduction potential in China’s chemical industry," Energy, Elsevier, vol. 35(12), pages 4663-4670.
    2. Park, Sangwon & Lee, Seungmoon & Jeong, Suk Jae & Song, Ho-Jun & Park, Jin-Won, 2010. "Assessment of CO2 emissions and its reduction potential in the Korean petroleum refining industry using energy-environment models," Energy, Elsevier, vol. 35(6), pages 2419-2429.
    3. de Almeida, Edmar Luiz Fagundes, 1998. "Energy efficiency and the limits of market forces: The example of the electric motor market in France," Energy Policy, Elsevier, vol. 26(8), pages 643-653, July.
    4. de Groot, Henri L. F. & Verhoef, Erik T. & Nijkamp, Peter, 2001. "Energy saving by firms: decision-making, barriers and policies," Energy Economics, Elsevier, vol. 23(6), pages 717-740, November.
    5. Walls, W.D., 2010. "Petroleum refining industry in China," Energy Policy, Elsevier, vol. 38(5), pages 2110-2115, May.
    6. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    7. Lee, Cheng F. & Lin, Sue J. & Lewis, Charles, 2008. "Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors," Energy Policy, Elsevier, vol. 36(2), pages 722-729, February.
    8. Lin, Boqiang & Wu, Ya & Zhang, Li, 2012. "Electricity saving potential of the power generation industry in China," Energy, Elsevier, vol. 40(1), pages 307-316.
    9. Johansson, Daniella & Rootzén, Johan & Berntsson, Thore & Johnsson, Filip, 2012. "Assessment of strategies for CO2 abatement in the European petroleum refining industry," Energy, Elsevier, vol. 42(1), pages 375-386.
    10. Rafiqul, Islam & Weber, Christoph & Lehmann, Bianca & Voss, Alfred, 2005. "Energy efficiency improvements in ammonia production—perspectives and uncertainties," Energy, Elsevier, vol. 30(13), pages 2487-2504.
    11. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    12. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    13. Szklo, Alexandre & Schaeffer, Roberto, 2007. "Fuel specification, energy consumption and CO2 emission in oil refineries," Energy, Elsevier, vol. 32(7), pages 1075-1092.
    14. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fanbin Meng & Yang Yu & Yangyang Wu & Dong Li & Xuefeng Zhao & Lan Meng & Zhihua Wang, 2023. "Study on Energy Flow Characteristics of Solar–Gas Combined Heating System for Settling Tank of Oilfield," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    2. Gu, Wugen & Huang, Yuqing & Wang, Kan & Zhang, Bingjian & Chen, Qinglin & Hui, Chi-Wai, 2014. "Comparative analysis and evaluation of three crude oil vacuum distillation processes for process selection," Energy, Elsevier, vol. 76(C), pages 559-571.
    3. Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
    4. Tahouni, Nassim & Gholami, Majid & Panjeshahi, M. Hassan, 2016. "Integration of flare gas with fuel gas network in refineries," Energy, Elsevier, vol. 111(C), pages 82-91.
    5. Song, Jian & Li, Yan & Gu, Chun-wei & Zhang, Li, 2014. "Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry," Energy, Elsevier, vol. 71(C), pages 673-680.
    6. Park, Nyun-Bae & Park, Sang Yong & Kim, Jong-Jin & Choi, Dong Gu & Yun, Bo Yeong & Hong, Jong Chul, 2017. "Technical and economic potential of highly efficient boiler technologies in the Korean industrial sector," Energy, Elsevier, vol. 121(C), pages 884-891.
    7. Liu, Xiaoyu & Cui, Qingbin, 2018. "Value of performance baseline in voluntary carbon trading under uncertainty," Energy, Elsevier, vol. 145(C), pages 468-476.
    8. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
    9. Pan, Lingying & Liu, Pei & Li, Zheng, 2018. "A discussion on China's vehicle fuel policy: Based on the development route optimization of refining industry," Energy Policy, Elsevier, vol. 114(C), pages 403-412.
    10. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    2. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    3. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    4. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    6. AZOMAHOU, Théophile & BOUCEKKINE, Raouf & NGUYEN-VAN, Phu, 2009. "Promoting clean technologies under imperfect competition," LIDAM Discussion Papers CORE 2009011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Théophile T. Azomahou & Raouf Boucekkine & Phu Nguyen-Vanc, "undated". "Promoting Clean Technologies: The Energy Market Structure Crucially Matters," Working Papers 2008_13, Business School - Economics, University of Glasgow.
    8. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    9. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    10. Gavenas, Ekaterina & Rosendahl, Knut Einar & Skjerpen, Terje, 2015. "CO2-emissions from Norwegian oil and gas extraction," Energy, Elsevier, vol. 90(P2), pages 1956-1966.
    11. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    12. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    13. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    14. Aditya Prana Iswara & Jerry Dwi Trijoyo Purnomo & Lin-Han Chiang Hsieh & Aulia Ulfah Farahdiba & Andrian Dolfriandra Huruta, 2022. "More Is More? The Inquiry of Reducing Greenhouse Gas Emissions in the Upstream Petroleum Fields of Indonesia," Sustainability, MDPI, vol. 14(11), pages 1-18, June.
    15. Lin, Boqiang & Moubarak, Mohamed, 2014. "Mitigation potential of carbon dioxide emissions in the Chinese textile industry," Applied Energy, Elsevier, vol. 113(C), pages 781-787.
    16. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    17. Chen, Jing-Ming & Yu, Biying & Wei, Yi-Ming, 2018. "Energy technology roadmap for ethylene industry in China," Applied Energy, Elsevier, vol. 224(C), pages 160-174.
    18. José Antonio Moya, 2017. "Where Diffusion of Clean Technologies and Barriers to Innovation Clash: Application to the Global Diffusion of the Electrical Arc Furnace," Energies, MDPI, vol. 10(1), pages 1-22, January.
    19. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    20. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:38-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.