IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp82-91.html
   My bibliography  Save this article

Integration of flare gas with fuel gas network in refineries

Author

Listed:
  • Tahouni, Nassim
  • Gholami, Majid
  • Panjeshahi, M. Hassan

Abstract

The high price of crude oil, strict environmental regulations and ever-increasing demand for energy have made refineries adopt a more holistic approach to integrating energy, economics and environment in their design and operation. Gas flaring is a major factor for the wastage of energy in oil and gas industries that could be better utilized and even generates revenue. Integration and use of wasted and flared gases with fuel gas network (FGN) is an effective approach for reducing GHG emissions as well as conserving energy in refineries. In this paper, current FGN model introduced by Hassan et al. was modified and also a novel methodology was presented for grass-root and retrofit design of FGNs using integration of flare gas streams. GHG emission concept is added to the base model as new constraint to control and minimize the flaring. A FGN proposed for a refinery case study with integration of flare gas streams indicated a 12% reduction in natural gas consumption compared to the non-integrated flare gas stream case and a 27.7% reduction compared to the base case with no FGN. In the retrofit case, results suggested that the maximum utilization of flare gas streams can be the most profitable solution.

Suggested Citation

  • Tahouni, Nassim & Gholami, Majid & Panjeshahi, M. Hassan, 2016. "Integration of flare gas with fuel gas network in refineries," Energy, Elsevier, vol. 111(C), pages 82-91.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:82-91
    DOI: 10.1016/j.energy.2016.05.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630665X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voldsund, Mari & Nguyen, Tuong-Van & Elmegaard, Brian & Ertesvåg, Ivar S. & Røsjorde, Audun & Jøssang, Knut & Kjelstrup, Signe, 2014. "Exergy destruction and losses on four North Sea offshore platforms: A comparative study of the oil and gas processing plants," Energy, Elsevier, vol. 74(C), pages 45-58.
    2. Lunghi, P. & Burzacca, R., 2004. "Energy recovery from industrial waste of a confectionery plant by means of BIGFC plant," Energy, Elsevier, vol. 29(12), pages 2601-2617.
    3. Liu, Xiaoyu & Chen, Dingjiang & Zhang, Wenjun & Qin, Weizhong & Zhou, Wenji & Qiu, Tong & Zhu, Bing, 2013. "An assessment of the energy-saving potential in China's petroleum refining industry from a technical perspective," Energy, Elsevier, vol. 59(C), pages 38-49.
    4. Morrow, William R. & Marano, John & Hasanbeigi, Ali & Masanet, Eric & Sathaye, Jayant, 2015. "Efficiency improvement and CO2 emission reduction potentials in the United States petroleum refining industry," Energy, Elsevier, vol. 93(P1), pages 95-105.
    5. Persson, Jörgen & Berntsson, Thore, 2009. "Influence of seasonal variations on energy-saving opportunities in a pulp mill," Energy, Elsevier, vol. 34(10), pages 1705-1714.
    6. Al-Salem, S.M., 2015. "Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view," Energy, Elsevier, vol. 81(C), pages 575-587.
    7. Christopher D. Elvidge & Daniel Ziskin & Kimberly E. Baugh & Benjamin T. Tuttle & Tilottama Ghosh & Dee W. Pack & Edward H. Erwin & Mikhail Zhizhin, 2009. "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, MDPI, vol. 2(3), pages 1-28, August.
    8. Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
    9. Ptasinski, K.J. & Koymans, M.N. & Verspagen, H.H.G., 2006. "Performance of the Dutch Energy Sector based on energy, exergy and Extended Exergy Accounting," Energy, Elsevier, vol. 31(15), pages 3135-3144.
    10. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    11. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    12. Worrell, Ernst & Price, Lynn & Martin, Nathan, 2001. "Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector," Energy, Elsevier, vol. 26(5), pages 513-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okoro, Emmanuel E. & Adeleye, Bosede N. & Okoye, Lawrence U. & Maxwell, Omeje, 2021. "Gas flaring, ineffective utilization of energy resource and associated economic impact in Nigeria: Evidence from ARDL and Bayer-Hanck cointegration techniques," Energy Policy, Elsevier, vol. 153(C).
    2. Ehsan Barekat-Rezaei & Mahmood Farzaneh-Gord & Alireza Arjomand & Mohsen Jannatabadi & Mohammad Hossein Ahmadi & Wei-Mon Yan, 2018. "Thermo–Economical Evaluation of Producing Liquefied Natural Gas and Natural Gas Liquids from Flare Gases," Energies, MDPI, vol. 11(7), pages 1-17, July.
    3. Talaei, Alireza & Oni, Abayomi Olufemi & Ahiduzzaman, Mohammed & Roychaudhuri, Pritam Sankar & Rutherford, Jeff & Kumar, Amit, 2020. "Assessment of the impacts of process-level energy efficiency improvement on greenhouse gas mitigation potential in the petroleum refining sector," Energy, Elsevier, vol. 191(C).
    4. Beigiparast, Siavash & Tahouni, Nassim & Abbasi, Mojgan & Panjeshahi, M. Hassan, 2021. "Flare gas reduction in an olefin plant under different start-up procedures," Energy, Elsevier, vol. 214(C).
    5. Rossi, Mosè & Comodi, Gabriele & Piacente, Nicola & Renzi, Massimiliano, 2020. "Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids," Applied Energy, Elsevier, vol. 270(C).
    6. Luisa Fernanda Ibañez-Gómez & Sebastian Albarracín-Quintero & Santiago Céspedes-Zuluaga & Erik Montes-Páez & Oswaldo Hideo Ando Junior & João Paulo Carmo & João Eduardo Ribeiro & Melkzedekue Moraes Al, 2022. "Process Optimization of the Flaring Gas for Field Applications," Energies, MDPI, vol. 15(20), pages 1-19, October.
    7. Hamza Semmari & Abdelkader Filali & Sofiane Aberkane & Renaud Feidt & Michel Feidt, 2020. "Flare Gas Waste Heat Recovery: Assessment of Organic Rankine Cycle for Electricity Production and Possible Coupling with Absorption Chiller," Energies, MDPI, vol. 13(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    2. Wang, Liang-Chen & Chang, Li-Ming & Wang, Liang-Bi & Song, Ke-Wei & Zhang, Yong-Heng & Wu, Xiang & Lin, Zhi-Min, 2014. "Analysis of the reusability of the energy of the exhaust gas from the calciner for the production of carbon," Energy, Elsevier, vol. 78(C), pages 439-450.
    3. Park, Nyun-Bae & Park, Sang Yong & Kim, Jong-Jin & Choi, Dong Gu & Yun, Bo Yeong & Hong, Jong Chul, 2017. "Technical and economic potential of highly efficient boiler technologies in the Korean industrial sector," Energy, Elsevier, vol. 121(C), pages 884-891.
    4. Hongju Da & Degang Xu & Jufeng Li & Zhihe Tang & Jiaxin Li & Chen Wang & Hui Luan & Fang Zhang & Yong Zeng, 2023. "Influencing Factors of Carbon Emission from Typical Refining Units: Identification, Analysis, and Mitigation Potential," Energies, MDPI, vol. 16(18), pages 1-17, September.
    5. Tilottama Ghosh & Christopher D. Elvidge & Paul C. Sutton & Kimberly E. Baugh & Daniel Ziskin & Benjamin T. Tuttle, 2010. "Creating a Global Grid of Distributed Fossil Fuel CO 2 Emissions from Nighttime Satellite Imagery," Energies, MDPI, vol. 3(12), pages 1-19, December.
    6. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    7. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    8. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    9. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    10. Thomas Akpan Harry & Ekemini John Peter & Nsidibe Akpan Udoduk, 2022. "Environmental Impact Assessment Of Oil Producing Communities In Part Of The Niger Delta. A Case Study Of Ibeno, Ikot Abasi, Onna And Esit-Eket Local Government Area In Akwa Ibom State, Nigeria," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 5(2), pages 49-56, April.
    11. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    12. Boslett, Andrew & Hill, Elaine & Ma, Lala & Zhang, Lujia, 2021. "Rural light pollution from shale gas development and associated sleep and subjective well-being," Resource and Energy Economics, Elsevier, vol. 64(C).
    13. Yaxi Gong & Xiang Ji & Yuan Zhang & Shanshan Cheng, 2023. "Spatial Vitality Evaluation and Coupling Regulation Mechanism of a Complex Ecosystem in Lixiahe Plain Based on Multi-Source Data," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    14. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    15. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    16. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2013. "Analysis of CO2 emissions reduction potential in secondary production and semi-fabrication of non-ferrous metals," Energy Policy, Elsevier, vol. 52(C), pages 328-341.
    17. Xuemei Wang & Mingguo Ma, 2017. "The luminous intensity of regional ‘night-light’ output can predict the growing volume of published scientific research by ‘luminaries’ in developing countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 1005-1010, February.
    18. Pardo Martínez, Clara Inés & Silveira, Semida, 2012. "Analysis of energy use and CO2 emission in service industries: Evidence from Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5285-5294.
    19. Andrew M. Linke & Frank D. W. Witmer & John O'Loughlin, 2012. "Space-Time Granger Analysis of the War in Iraq: A Study of Coalition and Insurgent Action-Reaction," International Interactions, Taylor & Francis Journals, vol. 38(4), pages 402-425, September.
    20. Sato, S. & Grubb, M. & Cust, J. & Chan, K. & Korppoo, A. & Ceppi, P., 2007. "Differentiation and dynamics of competitiveness impacts from the EU ETS," Cambridge Working Papers in Economics 0712, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:82-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.