IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i10p1705-1714.html
   My bibliography  Save this article

Influence of seasonal variations on energy-saving opportunities in a pulp mill

Author

Listed:
  • Persson, Jörgen
  • Berntsson, Thore

Abstract

Significant energy savings can be achieved in the pulp and paper industry through process integration. The aim of this paper was to investigate how much seasonal variations in the process influence the potential for making energy savings. The hot and warm water system in a market pulp mill has been evaluated from an energy point of view, using pinch analysis. Considerable energy-saving potential was found, 40.7MW, of which 16.5MW was in the form of steam savings. The steam savings represent 7% of the total steam consumption at the mill. New heat exchanger networks were redesigned using different approaches. The influence of seasonal variations was estimated from the calculated energy savings when monthly averages were used in the new heat exchanger networks. When seasonal variations were taken into account, the energy-saving opportunities fell by 2.5–5.0MW, depending on heat exchanger network design, compared with a steady-state scenario. Consequently, 88–94% of the theoretical energy savings could be realised. An economic evaluation indicates positive earnings from investment in a new heat exchanger network when seasonal variations were taken into account, even with low prices for the extracted steam and excess heat (5€/MWh) and with an annuity factor of 0.2.

Suggested Citation

  • Persson, Jörgen & Berntsson, Thore, 2009. "Influence of seasonal variations on energy-saving opportunities in a pulp mill," Energy, Elsevier, vol. 34(10), pages 1705-1714.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1705-1714
    DOI: 10.1016/j.energy.2009.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tveit, Tor-Martin & Aaltola, Juha & Laukkanen, Timo & Laihanen, Mika & Fogelholm, Carl-Johan, 2006. "A framework for local and regional energy system integration between industry and municipalities—Case study UPM-Kymmene Kaukas," Energy, Elsevier, vol. 31(12), pages 2162-2175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Langner & Elin Svensson & Simon Harvey, 2020. "A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks," Energies, MDPI, vol. 13(6), pages 1-24, March.
    2. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    3. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    4. Mei-Ling, Zheng & Wen, Wang, 2010. "Seasonal energy utilization optimization in an enterprise," Energy, Elsevier, vol. 35(9), pages 3932-3940.
    5. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    6. Tahouni, Nassim & Gholami, Majid & Panjeshahi, M. Hassan, 2016. "Integration of flare gas with fuel gas network in refineries," Energy, Elsevier, vol. 111(C), pages 82-91.
    7. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    8. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    9. Hatamipour, M.S. & Fakhr Hoseini, S.M. & Tavakkoli, T. & Mehrkesh, A.H., 2010. "An energy-saving opportunity in producing lubricating oil using mixed-solventin simulated Rotary Disc Contacting (RDC) extraction tower," Energy, Elsevier, vol. 35(5), pages 2130-2133.
    10. Ji, Xiaoyan & Lundgren, Joakim & Wang, Chuan & Dahl, Jan & Grip, Carl-Erik, 2012. "Simulation and energy optimization of a pulp and paper mill – Evaporation plant and digester," Applied Energy, Elsevier, vol. 97(C), pages 30-37.
    11. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    12. Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
    13. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    14. Liew, Peng Yen & Wan Alwi, Sharifah Rafidah & Ho, Wai Shin & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2018. "Multi-period energy targeting for Total Site and Locally Integrated Energy Sectors with cascade Pinch Analysis," Energy, Elsevier, vol. 155(C), pages 370-380.
    15. Svensson, Elin & Berntsson, Thore, 2011. "Planning future investments in emerging energy technologies for pulp mills considering different scenarios for their investment cost development," Energy, Elsevier, vol. 36(11), pages 6508-6519.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Langner & Elin Svensson & Simon Harvey, 2020. "A Framework for Flexible and Cost-Efficient Retrofit Measures of Heat Exchanger Networks," Energies, MDPI, vol. 13(6), pages 1-24, March.
    2. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    3. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    4. Lingwei Zhang & Yufei Wang & Xiao Feng, 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-21, April.
    5. Oh, Se-Young & Binns, Michael & Yeo, Yeong-Koo & Kim, Jin-Kuk, 2014. "Improving energy efficiency for local energy systems," Applied Energy, Elsevier, vol. 131(C), pages 26-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1705-1714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.