IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp350-356.html
   My bibliography  Save this article

Evaluation of self-heating in Miscanthus x giganteus energy crop clamps and the implications for harvesting time

Author

Listed:
  • Everard, Colm D.
  • Finnan, John
  • McDonnell, Kevin P.
  • Schmidt, Martin

Abstract

Miscanthus x giganteus energy crop grown in Ireland was harvested on 21st of February and 28th of March 2012 to examine the effects of harvesting time on self-heating during storage of Miscanthus chips in clamps (98 m3) under weather sheltered conditions. There was a relatively large difference in moisture content, of 21.4%, between Miscanthus crop harvested in February and March (41.6 and 20.2%, respectively). Temperature evolution over a storage period of up to 125 days was monitored at different heights and distances from the centre within the clamps. Maximum temperature in the February constructed clamp reached 69 °C compared to 28 °C in the March constructed clamp. Microbial activity was monitored via carbon dioxide and oxygen gas measurements. The high moisture clamp showed higher microbial activity and a volume yield loss of 4.3% due to decomposition in the top section of the clamp. Quality indices post-storage were also assessed. Calorific values from Miscanthus sampled 1 m below the top surface were similar after storage for both February and March constructed clamps, i.e. 18.52 and 18.70 MJ kg−1, respectively. A reliable assessment of self-heating in Miscanthus chip clamps has important consequences for both self-ignition risk and biomass quality.

Suggested Citation

  • Everard, Colm D. & Finnan, John & McDonnell, Kevin P. & Schmidt, Martin, 2013. "Evaluation of self-heating in Miscanthus x giganteus energy crop clamps and the implications for harvesting time," Energy, Elsevier, vol. 58(C), pages 350-356.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:350-356
    DOI: 10.1016/j.energy.2013.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    2. Styles, David & Jones, Michael B., 2007. "Current and future financial competitiveness of electricity and heat from energy crops: A case study from Ireland," Energy Policy, Elsevier, vol. 35(8), pages 4355-4367, August.
    3. van den Broek, R & Teeuwisse, S & Healion, K & Kent, T & van Wijk, A & Faaij, A & Turkenburg, W, 2001. "Potentials for electricity production from wood in Ireland," Energy, Elsevier, vol. 26(11), pages 991-1013.
    4. Casal, M.D. & Gil, M.V. & Pevida, C. & Rubiera, F. & Pis, J.J., 2010. "Influence of storage time on the quality and combustion behaviour of pine woodchips," Energy, Elsevier, vol. 35(7), pages 3066-3071.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Hilst, F. & Dornburg, V. & Sanders, J.P.M. & Elbersen, B. & Graves, A. & Turkenburg, W.C. & Elbersen, H.W. & van Dam, J.M.C. & Faaij, A.P.C., 2010. "Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example," Agricultural Systems, Elsevier, vol. 103(7), pages 403-417, September.
    2. Styles, David & Jones, Michael B., 2008. "Miscanthus and willow heat production--An effective land-use strategy for greenhouse gas emission avoidance in Ireland?," Energy Policy, Elsevier, vol. 36(1), pages 97-107, January.
    3. Andrée, Bo Pieter Johannes & Diogo, Vasco & Koomen, Eric, 2017. "Efficiency of second-generation biofuel crop subsidy schemes: Spatial heterogeneity and policy design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 848-862.
    4. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    5. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    6. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    7. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    8. Sherrington, Chris & Bartley, Justin & Moran, Dominic, 2008. "Farm-level constraints on the domestic supply of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 36(7), pages 2504-2512, July.
    9. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    10. repec:zbw:inwedp:432009 is not listed on IDEAS
    11. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    12. Liu, Jiazheng & Zhong, Fei & Niu, Wenjuan & Su, Jing & Gao, Ziqi & Zhang, Kai, 2019. "Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis," Energy, Elsevier, vol. 175(C), pages 320-332.
    13. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2010. "Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies," Applied Energy, Elsevier, vol. 87(7), pages 2128-2141, July.
    14. Ignaciuk, Adriana M. & Dellink, Rob B., 2006. "Biomass and multi-product crops for agricultural and energy production--an AGE analysis," Energy Economics, Elsevier, vol. 28(3), pages 308-325, May.
    15. Takeshita, Takayuki, 2011. "Competitiveness, role, and impact of microalgal biodiesel in the global energy future," Applied Energy, Elsevier, vol. 88(10), pages 3481-3491.
    16. Chen, Wei-Hsin & Hsu, Huan-Chun & Lu, Ke-Miao & Lee, Wen-Jhy & Lin, Ta-Chang, 2011. "Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass," Energy, Elsevier, vol. 36(5), pages 3012-3021.
    17. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    18. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    19. Jämsén, M. & Agar, D. & Alakoski, E. & Tampio, E. & Wihersaari, M., 2015. "Measurement methodology for greenhouse gas emissions from storage of forest chips–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1617-1623.
    20. O’Mahoney, Amy & Thorne, Fiona & Denny, Eleanor, 2013. "A cost-benefit analysis of generating electricity from biomass," Energy Policy, Elsevier, vol. 57(C), pages 347-354.
    21. Felten, Daniel & Fröba, Norbert & Fries, Jérôme & Emmerling, Christoph, 2013. "Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany," Renewable Energy, Elsevier, vol. 55(C), pages 160-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:350-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.