IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v50y2013icp110-119.html
   My bibliography  Save this article

A physically-based model for simulating inverter type air conditioners/heat pumps

Author

Listed:
  • Gomes, A.
  • Antunes, C. Henggeler
  • Martinho, J.

Abstract

The engagement in demand response activities is increasingly becoming more attractive for several entities in the power systems sector. In general terms, the main goal of such activities is to change the demand level and patterns by implementing management actions over groups of loads to minimize peak demand or electricity bill, maximize profits or increase the systems reliability, among other objectives. However, in order to avoid potential undesirable impacts it is necessary to anticipate and adequately assess the changes in demand originated by such actions. This assessment requires adequate simulation tools and models with the ability to simulate demand management actions. This work presents a physically-based model that allows reproducing the behavior of an inverter type heat pump. This model can be used to simulate the demand of an individual device or several devices. Besides, it allows simulating and assessing the impacts of implementing demand management actions over this type of end-use loads. The results show that the model can effectively reproduce the demand of this type of equipment, becoming a useful tool for the prior assessment and even the design and selection of demand response actions to be applied over these loads.

Suggested Citation

  • Gomes, A. & Antunes, C. Henggeler & Martinho, J., 2013. "A physically-based model for simulating inverter type air conditioners/heat pumps," Energy, Elsevier, vol. 50(C), pages 110-119.
  • Handle: RePEc:eee:energy:v:50:y:2013:i:c:p:110-119
    DOI: 10.1016/j.energy.2012.11.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212009152
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouda, A. & Melikyan, Z., 2010. "Assessment of a modified method for determining the cooling load of residential buildings," Energy, Elsevier, vol. 35(12), pages 4726-4730.
    2. Centolella, Paul, 2010. "The integration of Price Responsive Demand into Regional Transmission Organization (RTO) wholesale power markets and system operations," Energy, Elsevier, vol. 35(4), pages 1568-1574.
    3. Shahnawaz Ahmed, S. & Shah Majid, Md. & Novia, Hendri & Abd Rahman, Hasimah, 2007. "Fuzzy logic based energy saving technique for a central air conditioning system," Energy, Elsevier, vol. 32(7), pages 1222-1234.
    4. Finn, P. & Fitzpatrick, C. & Connolly, D., 2012. "Demand side management of electric car charging: Benefits for consumer and grid," Energy, Elsevier, vol. 42(1), pages 358-363.
    5. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    6. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    7. Pantoš, Miloš, 2011. "Stochastic optimal charging of electric-drive vehicles with renewable energy," Energy, Elsevier, vol. 36(11), pages 6567-6576.
    8. Zarnikau, Jay W., 2010. "Demand participation in the restructured Electric Reliability Council of Texas market," Energy, Elsevier, vol. 35(4), pages 1536-1543.
    9. Zhang, H.-F. & Ge, X.-S. & Ye, H., 2007. "Modeling of a space heating and cooling system with seasonal energy storage," Energy, Elsevier, vol. 32(1), pages 51-58.
    10. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    11. van Ruijven, Bas & de Vries, Bert & van Vuuren, Detlef P. & van der Sluijs, Jeroen P., 2010. "A global model for residential energy use: Uncertainty in calibration to regional data," Energy, Elsevier, vol. 35(1), pages 269-282.
    12. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    13. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "The role of demand-side management in the grid integration of wind power," Applied Energy, Elsevier, vol. 87(8), pages 2581-2588, August.
    14. Tashtoush, Bourhan & Molhim, M. & Al-Rousan, M., 2005. "Dynamic model of an HVAC system for control analysis," Energy, Elsevier, vol. 30(10), pages 1729-1745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana García-Garre & Antonio Gabaldón & Carlos Álvarez-Bel & María Del Carmen Ruiz-Abellón & Antonio Guillamón, 2018. "Integration of Demand Response and Photovoltaic Resources in Residential Segments," Sustainability, MDPI, Open Access Journal, vol. 10(9), pages 1-31, August.
    2. Carsten Palkowski & Andreas Zottl & Ivan Malenkovic & Anne Simo, 2019. "Fixing Efficiency Values by Unfixing Compressor Speed: Dynamic Test Method for Heat Pumps," Energies, MDPI, Open Access Journal, vol. 12(6), pages 1-16, March.
    3. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    4. Soares, Ana & Gomes, Álvaro & Antunes, Carlos Henggeler, 2014. "Categorization of residential electricity consumption as a basis for the assessment of the impacts of demand response actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 490-503.
    5. Antonio Gabaldón & Carlos Álvarez & María Del Carmen Ruiz-Abellón & Antonio Guillamón & Sergio Valero-Verdú & Roque Molina & Ana García-Garre, 2018. "Integration of Methodologies for the Evaluation of Offer Curves in Energy and Capacity Markets through Energy Efficiency and Demand Response," Sustainability, MDPI, Open Access Journal, vol. 10(2), pages 1-27, February.
    6. Gonçalves, Ivo & Gomes, Álvaro & Henggeler Antunes, Carlos, 2019. "Optimizing the management of smart home energy resources under different power cost scenarios," Applied Energy, Elsevier, vol. 242(C), pages 351-363.
    7. Xie, Jiantong & Pan, Yiqun & Jia, Wenqi & Xu, Lei & Huang, Zhizhong, 2019. "Energy-consumption simulation of a distributed air-conditioning system integrated with occupant behavior," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:50:y:2013:i:c:p:110-119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.