IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923019372.html
   My bibliography  Save this article

Low carbon scheduling method of electric power system considering energy-intensive load regulation of electrofused magnesium and wind powerfluctuation stabilization

Author

Listed:
  • Zhao, Xudong
  • Wang, Yibo
  • Liu, Chuang
  • Cai, Guowei
  • Ge, Weichun
  • Zhou, Jianing
  • Wang, Dongzhe

Abstract

The significant expansion of wind power has presented challenging obstacles to power system operation. The inherent stochasticity and variability of wind power have emerged as critical issues that impede the advancement of wind energy, affecting its integration and volatility control. Moreover, with the momentum of carbon peaking and carbon neutrality objectives, reducing CO2 emissions has become urgent. This study proposes a low-carbon dispatching methodology for power systems to address these challenges. It considers regulating energy-intensive loads of electrically fused magnesium and mitigating wind power fluctuations. The approach involves integrating electrically Fused magnesium loads with tight regulation characteristics on the demand side alongside thermal power plants to optimize the power grid and dispatch collectively. And battery energy storage devices are introduced into various wind power stations on the supply side to smooth out wind power fluctuations. The objective function aims to minimize the sum of the average variance of power fluctuations at all wind power busbars while adhering to constraints of maximum wind power consumption and minimum carbon emissions from thermal power plants. The problem is solved using genetic algorithms. Ultimately, we show how effective our proposed low-carbon dispatching method for power systems is, which deals with regulating energy-intensive loads of electrically fused magnesium and reducing wind power fluctuations. We demonstrate this through a case study of wind curtailment, CO2 emissions, wind power fluctuations, and other related parameters under different conditions. The approach can enhance renewable energy consumption, reduce carbon emissions, and mitigate the power fluctuations of renewable energy.

Suggested Citation

  • Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Zhou, Jianing & Wang, Dongzhe, 2024. "Low carbon scheduling method of electric power system considering energy-intensive load regulation of electrofused magnesium and wind powerfluctuation stabilization," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019372
    DOI: 10.1016/j.apenergy.2023.122573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "Multi-objective optimization of a mixed renewable system with demand-side management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1461-1468, June.
    2. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    3. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    4. Yang, Hongming & Liang, Rui & Yuan, Yuan & Chen, Bowen & Xiang, Sheng & Liu, Junpeng & Zhao, Huan & Ackom, Emmanuel, 2022. "Distributionally robust optimal dispatch in the power system with high penetration of wind power based on net load fluctuation data," Applied Energy, Elsevier, vol. 313(C).
    5. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    6. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    7. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    8. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    9. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    10. Li, Shenglin & Zhu, Jizhong & Dong, Hanjiang & Zhu, Haohao & Fan, Junwei, 2022. "A novel rolling optimization strategy considering grid-connected power fluctuations smoothing for renewable energy microgrids," Applied Energy, Elsevier, vol. 309(C).
    11. Park, Byungkwon & Dong, Jin & Liu, Boming & Kuruganti, Teja, 2023. "Decarbonizing the grid: Utilizing demand-side flexibility for carbon emission reduction through locational marginal emissions in distribution networks," Applied Energy, Elsevier, vol. 330(PA).
    12. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    13. Baumgärtner, Nils & Delorme, Roman & Hennen, Maike & Bardow, André, 2019. "Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management," Applied Energy, Elsevier, vol. 247(C), pages 755-765.
    14. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "The role of demand-side management in the grid integration of wind power," Applied Energy, Elsevier, vol. 87(8), pages 2581-2588, August.
    15. Xenos, Dionysios P. & Mohd Noor, Izzati & Matloubi, Mitra & Cicciotti, Matteo & Haugen, Trond & Thornhill, Nina F., 2016. "Demand-side management and optimal operation of industrial electricity consumers: An example of an energy-intensive chemical plant," Applied Energy, Elsevier, vol. 182(C), pages 418-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Yida & Li, Xiangguang & Tan, Caixia & Tan, Zhongfu, 2024. "Two-stage multi-objective distributionally robust operation optimization and benefits equalization of an off-grid type electric-hydrogen-ammonia-methanol coupling system," Renewable Energy, Elsevier, vol. 236(C).
    2. Gao, Minkun & Xiang, Leijun & Zhu, Shanying & Lin, Qichao, 2024. "Scenario probabilistic data-driven two-stage robust optimal operation strategy for regional integrated energy systems considering ladder-type carbon trading," Renewable Energy, Elsevier, vol. 237(PD).
    3. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    4. Sivasubramanian Manikandan & Rangarajan Sindhu Kaviya & Dhamodharan Hemnath Shreeharan & Ramasamy Subbaiya & Sundaram Vickram & Natchimuthu Karmegam & Woong Kim & Muthusamy Govarthanan, 2025. "Artificial intelligence‐driven sustainability: Enhancing carbon capture for sustainable development goals– A review," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(2), pages 2004-2029, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    3. Nilges, B. & Haese, A. & Reinert, C. & von der Assen, N., 2025. "Validity ranges of locational marginal emission factors for the environmental assessment of electric load shifting," Applied Energy, Elsevier, vol. 380(C).
    4. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    5. Moreno-Leiva, Simón & Haas, Jannik & Nowak, Wolfgang & Kracht, Willy & Eltrop, Ludger & Breyer, Christian, 2024. "Flexible copper: Exploring capacity-based energy demand flexibility in the industry," Energy, Elsevier, vol. 305(C).
    6. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    7. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    8. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    9. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    10. Chiara Magni & Alessia Arteconi & Konstantinos Kavvadias & Sylvain Quoilin, 2020. "Modelling the Integration of Residential Heat Demand and Demand Response in Power Systems with High Shares of Renewables," Energies, MDPI, vol. 13(24), pages 1-19, December.
    11. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    13. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    14. Wolf, Isabel & Holzapfel, Peter K.R. & Meschede, Henning & Finkbeiner, Matthias, 2023. "On the potential of temporally resolved GHG emission factors for load shifting: A case study on electrified steam generation," Applied Energy, Elsevier, vol. 348(C).
    15. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    16. Ranaboldo, M. & Aragüés-Peñalba, M. & Arica, E. & Bade, A. & Bullich-Massagué, E. & Burgio, A. & Caccamo, C. & Caprara, A. & Cimmino, D. & Domenech, B. & Donoso, I. & Fragapane, G. & González-Font-de-, 2024. "A comprehensive overview of industrial demand response status in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    17. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    18. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    19. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    20. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923019372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.