IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v42y2012i1p321-330.html
   My bibliography  Save this article

Optimal control of a residential microgrid

Author

Listed:
  • Kriett, Phillip Oliver
  • Salani, Matteo

Abstract

We propose a generic mixed integer linear programming model to minimize the operating cost of a residential microgrid. We model supply and demand of both electrical and thermal energy as decision variables. The modeled microgrid is operated in grid-connected mode. It covers solar energy, distributed generators, energy storages, and loads, among them controllable load jobs released by home appliances and electric vehicles. We propose a model predictive control scheme to iteratively produce a control sequence for the studied microgrid. Our case study reveals the performance of minimum cost control by comparison with benchmark control policies. We consider three price scenarios in our analyses which include two market-based scenarios. Numerical results from our study indicate savings in annual operating cost between 3.1 and 7.6 percent.

Suggested Citation

  • Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
  • Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:321-330
    DOI: 10.1016/j.energy.2012.03.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212002526
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.03.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    2. Sanseverino, Eleonora Riva & Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & De Paola, Alessandra & Lo Re, Giuseppe, 2011. "An execution, monitoring and replanning approach for optimal energy management in microgrids," Energy, Elsevier, vol. 36(5), pages 3429-3436.
    3. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    4. Kenneth R. Baker & David W. Peterson, 1979. "An Analytic Framework for Evaluating Rolling Schedules," Management Science, INFORMS, vol. 25(4), pages 341-351, April.
    5. Li, Han-Lin & Chang, Ching-Ter & Tsai, Jung-Fa, 2002. "Approximately global optimization for assortment problems using piecewise linearization techniques," European Journal of Operational Research, Elsevier, vol. 140(3), pages 584-589, August.
    6. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    2. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    3. Yong Long & Yu Wang & Chengrong Pan, 2018. "Incentive Mechanism of Micro-grid Project Development," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    5. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    6. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    7. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    8. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    9. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    10. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    11. Xin Li & Jingang Lai & Ruoli Tang, 2017. "A Hybrid Constraints Handling Strategy for Multiconstrained Multiobjective Optimization Problem of Microgrid Economical/Environmental Dispatch," Complexity, Hindawi, vol. 2017, pages 1-12, December.
    12. Yang, Libing & Entchev, Evgueniy & Ghorab, Mohamed & Lee, Euy-Joon & Kang, Eun-Chul & Kim, Yu-Jin & Nam, Yujin & Bae, Sangmu & Kim, Kwonye, 2022. "Advanced smart trigeneration energy system design for commercial building applications – Energy and cost performance analyses," Energy, Elsevier, vol. 259(C).
    13. Khan, Muhammad Waseem & Wang, Jie, 2017. "The research on multi-agent system for microgrid control and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1399-1411.
    14. Niknam, Taher & Golestaneh, Faranak & Shafiei, Mehdi, 2013. "Probabilistic energy management of a renewable microgrid with hydrogen storage using self-adaptive charge search algorithm," Energy, Elsevier, vol. 49(C), pages 252-267.
    15. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    16. Meng, Lexuan & Sanseverino, Eleonora Riva & Luna, Adriana & Dragicevic, Tomislav & Vasquez, Juan C. & Guerrero, Josep M., 2016. "Microgrid supervisory controllers and energy management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1263-1273.
    17. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    18. Yong Long & Yu Wang & Chengrong Pan, 2017. "Auction Mechanism of Micro-Grid Project Transfer," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    19. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    20. Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:321-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.