IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i1p158-167.html
   My bibliography  Save this article

Co2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel

Author

Listed:
  • Castelo Branco, David A.
  • Szklo, Alexandre S.
  • Schaeffer, Roberto

Abstract

This study evaluates the possibility of installing an offshore gas-to-liquids (GTL) plant in Brazil to reduce Natural Gas (NG) flaring, curb carbon dioxide equivalent (CO2e) emissions and produce premium diesel. CO2e emissions abatement costs were estimated by comparing two alternatives. The first alternative (baseline) considers that the volume of NG flared will not be reduced. Low-sulfur fuels (diesel and naphtha) will be obtained by investing in treatment units in Brazilian refineries. These are hydrotreating units for unstable compounds and hydrodesulfurizer units for fluid catalytic cracking (FCC) naphtha. Currently in Brazilian refineries, without any investment, the lower-quality streams that should be removed from diesel and gasoline pools to comply with higher specifications are light-cycle oil and FCC naphtha, respectively. The second alternative considers an offshore microchannel GTL plant producing synthetic crude oil, or syncrude. The upgrading of this syncrude is done by a mild-hydrocracking unit. This alternative allows the production of low-sulfur diesel, reducing gas flaring and co-producing high-quality naphtha. The results show that CO2e emissions abatement costs of offshore GTL in Brazil should range between negative US$ 2.00 and positive 80.00/tCO2e. Nevertheless, the typical scenario shows an average figure of US$ 37.00/tCO2e abated.

Suggested Citation

  • Castelo Branco, David A. & Szklo, Alexandre S. & Schaeffer, Roberto, 2010. "Co2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel," Energy, Elsevier, vol. 35(1), pages 158-167.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:158-167
    DOI: 10.1016/j.energy.2009.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szklo, Alexandre Salem & Carneiro, Jason Thomas Guerreiro & Machado, Giovani, 2008. "Break-even price for upstream activities in Brazil: Evaluation of the opportunity cost of oil production delay in a non-mature sedimentary production region," Energy, Elsevier, vol. 33(4), pages 589-600.
    2. Stelmachowski, Marek & Nowicki, Lech, 2003. "Fuel from the synthesis gas--the role of process engineering," Applied Energy, Elsevier, vol. 74(1-2), pages 85-93, January.
    3. Thomas, Sydney & Dawe, Richard A, 2003. "Review of ways to transport natural gas energy from countries which do not need the gas for domestic use," Energy, Elsevier, vol. 28(14), pages 1461-1477.
    4. Denis Babusiaux & Pierre-René Bauquis, 2007. "Depletion of Petroleum Reserves and Oil Price trends," Working Papers hal-02469371, HAL.
    5. Szklo, Alexandre & Schaeffer, Roberto, 2006. "Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition," Energy, Elsevier, vol. 31(14), pages 2513-2522.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    2. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.
    3. Rodrigues, A.C.C., 2022. "Decreasing natural gas flaring in Brazilian oil and gas industry," Resources Policy, Elsevier, vol. 77(C).
    4. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    5. Borba, Bruno S.M.C. & Lucena, André F.P. & Rathmann, Régis & Costa, Isabella V.L. & Nogueira, Larissa P.P. & Rochedo, Pedro R.R. & Castelo Branco, David A. & Júnior, Mauricio F.H. & Szklo, Alexandre &, 2012. "Energy-related climate change mitigation in Brazil: Potential, abatement costs and associated policies," Energy Policy, Elsevier, vol. 49(C), pages 430-441.
    6. Li, Xin & Hu, Longhua & Shang, Fengju, 2018. "Flame downwash transition and its maximum length with increasing fuel supply of non-premixed jet in cross flow," Energy, Elsevier, vol. 164(C), pages 298-305.
    7. Höök, Mikael & Fantazzini, Dean & Angelantoni, André & Snowden, Simon, 2013. "Hydrocarbon liquefaction: viability as a peak oil mitigation strategy," MPRA Paper 46957, University Library of Munich, Germany.
    8. Luisa Fernanda Ibañez-Gómez & Sebastian Albarracín-Quintero & Santiago Céspedes-Zuluaga & Erik Montes-Páez & Oswaldo Hideo Ando Junior & João Paulo Carmo & João Eduardo Ribeiro & Melkzedekue Moraes Al, 2022. "Process Optimization of the Flaring Gas for Field Applications," Energies, MDPI, vol. 15(20), pages 1-19, October.
    9. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goldemberg, José & Schaeffer, Roberto & Szklo, Alexandre & Lucchesi, Rodrigo, 2014. "Oil and natural gas prospects in South America: Can the petroleum industry pave the way for renewables in Brazil?," Energy Policy, Elsevier, vol. 64(C), pages 58-70.
    2. Muhammad Sajid & Farhan Ahmed & Shafique Ahmed & Aadil Panhwar, 2018. "Viability of Liquefied Natural Gas (LNG) in Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 146-154.
    3. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    4. Vincent Brémond & Emmanuel Hache & Tovonony Razafindrabe, 2015. "On the link between oil price and exchange rate : A time-varying VAR parameter approach," Working Papers hal-03206684, HAL.
    5. Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
    6. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    7. Ding, Mingyue & Tu, Junling & Qiu, Minghuang & Wang, Tiejun & Ma, Longlong & Li, Yuping, 2015. "Impact of potassium promoter on Cu–Fe based mixed alcohols synthesis catalyst," Applied Energy, Elsevier, vol. 138(C), pages 584-589.
    8. Gomes Relva, Stefania & Oliveira da Silva, Vinícius & Peyerl, Drielli & Veiga Gimenes, André Luiz & Molares Udaeta, Miguel Edgar, 2020. "Regulating the electro-energetic use of natural gas by gas-to-wire offshore technology: Case study from Brazil," Utilities Policy, Elsevier, vol. 66(C).
    9. Dupoux, Marion, 2019. "The land use change time-accounting failure," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    10. Sanya Du & Yixin Qu & Hui Li & Xiaohui Yu, 2022. "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation," Energies, MDPI, vol. 15(12), pages 1-14, June.
    11. Ding, Mingyue & Yang, Yong & Li, Yongwang & Wang, Tiejun & Ma, Longlong & Wu, Chuangzhi, 2013. "Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer Tropsch synthesis catalyst," Applied Energy, Elsevier, vol. 112(C), pages 1241-1246.
    12. Albert Banal-Estañol & Jeremy Eckhause & Olivier Massol, 2015. "Incentives for early adoption of carbon capture technology: further considerations from a European perspective," Working Papers hal-02475485, HAL.
    13. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    14. Wan Ahmad, Wan Nurul K. & Rezaei, Jafar & de Brito, Marisa P. & Tavasszy, Lóránt A., 2016. "The influence of external factors on supply chain sustainability goals of the oil and gas industry," Resources Policy, Elsevier, vol. 49(C), pages 302-314.
    15. Anthony Paris, 2016. "The Effect of Biofuels on the Link between Oil and Agricultural Commodity Prices: A Smooth Transition Cointegration Approach," EconomiX Working Papers 2016-5, University of Paris Nanterre, EconomiX.
    16. Song, Xueping & Guo, Zhancheng, 2007. "Production of synthesis gas by co-gasifying coke and natural gas in a fixed bed reactor," Energy, Elsevier, vol. 32(10), pages 1972-1978.
    17. Ong, Yee Kang & Bhatia, Subhash, 2010. "The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils," Energy, Elsevier, vol. 35(1), pages 111-119.
    18. van Ruijven, Bas & van Vuuren, Detlef P., 2009. "Oil and natural gas prices and greenhouse gas emission mitigation," Energy Policy, Elsevier, vol. 37(11), pages 4797-4808, November.
    19. Szklo, Alexandre & Machado, Giovani & Schaeffer, Roberto, 2007. "Future oil production in Brazil--Estimates based on a Hubbert model," Energy Policy, Elsevier, vol. 35(4), pages 2360-2367, April.
    20. Park, Sung Ho & Lee, Seung Jong & Lee, Jin Wook & Chun, Sung Nam & Lee, Jung Bin, 2015. "The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters," Energy, Elsevier, vol. 81(C), pages 47-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:1:p:158-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.