IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp298-305.html
   My bibliography  Save this article

Flame downwash transition and its maximum length with increasing fuel supply of non-premixed jet in cross flow

Author

Listed:
  • Li, Xin
  • Hu, Longhua
  • Shang, Fengju

Abstract

The present study experimentally investigated the flame downwash transition and its maximum length that can be reached at leeward side of nozzle with increasing fuel supply of non-premixed jet in cross flows. Experiments were conducted with 8, 10, 13 and 15 mm nozzles, using propane and methane as fuel. The cross flow speed ranges from 0.70 to 3.08 m/s while the fuel jet velocity ranges between 0.04 and 4.26 m/s. Results showed that, with increasing fuel supply at a given cross flow speed, flame downwash length first increased (fuel supply controlled regime) then decreased (leeward side reversing flow rotating strength controlled regime). A function between the jet-to-crossflow momentum flux ratio (Rc) and dimensionless fuel mass flow rate (m˙c∗) was proposed to illuminate the tuning state of above transition. The flame downwash maximum length at the turning state normalized by nozzle diameter was found to have a linear relation with Froude number of fuel jet (Frj=uj/gD) or cross flow (Fra=ua2/gD). These findings contribute to a better understanding of flame downwash evolution process, which could have a basic significance for reducing fuel emission, improving combustion energy efficiency and saving energy by controlling the flame downwash scale.

Suggested Citation

  • Li, Xin & Hu, Longhua & Shang, Fengju, 2018. "Flame downwash transition and its maximum length with increasing fuel supply of non-premixed jet in cross flow," Energy, Elsevier, vol. 164(C), pages 298-305.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:298-305
    DOI: 10.1016/j.energy.2018.08.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
    2. Comodi, Gabriele & Renzi, Massimiliano & Rossi, Mosè, 2016. "Energy efficiency improvement in oil refineries through flare gas recovery technique to meet the emission trading targets," Energy, Elsevier, vol. 109(C), pages 1-12.
    3. Zolfaghari, Mohabbat & Pirouzfar, Vahid & Sakhaeinia, Hossein, 2017. "Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants," Energy, Elsevier, vol. 124(C), pages 481-491.
    4. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    5. Castelo Branco, David A. & Szklo, Alexandre S. & Schaeffer, Roberto, 2010. "Co2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel," Energy, Elsevier, vol. 35(1), pages 158-167.
    6. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    7. Yuan, Ye & Li, GuoXiu & Sun, ZuoYu & Li, HongMeng & Zhou, ZiHang, 2016. "Experimental study on the dynamical features of a partially premixed methane jet flame in coflow," Energy, Elsevier, vol. 111(C), pages 593-598.
    8. Yang, Weihong & Blasiak, Wlodzimierz, 2005. "Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air," Energy, Elsevier, vol. 30(2), pages 385-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangeetha, Thangavel & Li, I-Ting & Lan, Tzu-Hsuan & Wang, Chin-Tsan & Yan, Wei-Mon, 2021. "A fluid dynamics perspective on the flow dependent performance of honey comb microbial fuel cells," Energy, Elsevier, vol. 214(C).
    2. Zhang, Xiaochun & Zhang, Zijian & Su, Guokai & Tang, Fei & Liu, Aihua & Tao, Haowen, 2020. "Experimental study on thermal hazard and facade flame characterization induced by incontrollable combustion of indoor energy usage," Energy, Elsevier, vol. 207(C).
    3. Liu, Lijuan & Zhang, Qi, 2019. "Flame range and energy output in two-phase propylene oxide/air mixtures beyond the original premixed zone," Energy, Elsevier, vol. 171(C), pages 666-677.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaolei & Hu, Longhua & Delichatsios, Michael A. & Zhang, Jianping, 2019. "Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames," Applied Energy, Elsevier, vol. 254(C).
    2. Beigiparast, Siavash & Tahouni, Nassim & Abbasi, Mojgan & Panjeshahi, M. Hassan, 2021. "Flare gas reduction in an olefin plant under different start-up procedures," Energy, Elsevier, vol. 214(C).
    3. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
    4. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    5. Ehsan Barekat-Rezaei & Mahmood Farzaneh-Gord & Alireza Arjomand & Mohsen Jannatabadi & Mohammad Hossein Ahmadi & Wei-Mon Yan, 2018. "Thermo–Economical Evaluation of Producing Liquefied Natural Gas and Natural Gas Liquids from Flare Gases," Energies, MDPI, vol. 11(7), pages 1-17, July.
    6. Luisa Fernanda Ibañez-Gómez & Sebastian Albarracín-Quintero & Santiago Céspedes-Zuluaga & Erik Montes-Páez & Oswaldo Hideo Ando Junior & João Paulo Carmo & João Eduardo Ribeiro & Melkzedekue Moraes Al, 2022. "Process Optimization of the Flaring Gas for Field Applications," Energies, MDPI, vol. 15(20), pages 1-19, October.
    7. Eshaghi, Soroush & Hamrang, Farzad, 2021. "An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant," Energy, Elsevier, vol. 228(C).
    8. Hamza Semmari & Abdelkader Filali & Sofiane Aberkane & Renaud Feidt & Michel Feidt, 2020. "Flare Gas Waste Heat Recovery: Assessment of Organic Rankine Cycle for Electricity Production and Possible Coupling with Absorption Chiller," Energies, MDPI, vol. 13(9), pages 1-16, May.
    9. Nezhadfard, Mahya & Khalili-Garakani, Amirhossein, 2020. "Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios," Energy, Elsevier, vol. 204(C).
    10. Rahimpour, M.R. & Mirvakili, A. & Paymooni, K., 2011. "A novel water perm-selective membrane dual-type reactor concept for Fischer–Tropsch synthesis of GTL (gas to liquid) technology," Energy, Elsevier, vol. 36(2), pages 1223-1235.
    11. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    12. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.
    13. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    14. Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
    15. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    16. Mohammad Mehdi Parivazh & Milad Mousavi & Mansoor Naderi & Amir Rostami & Mahdieh Dibaj & Mohammad Akrami, 2022. "The Feasibility Study, Exergy, and Exergoeconomic Analyses of a Novel Flare Gas Recovery System," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    17. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    18. Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
    19. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    20. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:298-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.