IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i2p385-398.html
   My bibliography  Save this article

Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air

Author

Listed:
  • Yang, Weihong
  • Blasiak, Wlodzimierz

Abstract

Combustion of a single jet of propane in a cross-flowing stream of preheated and oxygen deficient air is numerically analyzed with emphasis on influences of fuel temperature. Both Eddy-Break-Up and PDF/mixture fraction combustion models coupled with RNG k–ε turbulent model were applied and the predicted results were compared. Thermal and prompt NO models were employed to calculate NO emissions. Results show that the Eddy-Break-Up model is more suitable for predicting temperature field and flame shape. It was showed that flame during high temperature air combustion condition is spread over a much larger volume. Flame volume increases with a reduction of oxygen concentration, and this trend is clearer if oxygen concentration in the preheated air is below 10%. Additionally, it is almost constant at fixed oxygen concentration and fuel inlet temperature for the temperature of the preheated and oxygen deficient air equal to 1041–1273 K. Increase of the fuel inlet temperature results in smaller flame, shorter mean residence time, smaller temperature peaks, and lower emission of NO.

Suggested Citation

  • Yang, Weihong & Blasiak, Wlodzimierz, 2005. "Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air," Energy, Elsevier, vol. 30(2), pages 385-398.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:2:p:385-398
    DOI: 10.1016/j.energy.2004.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204002713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pourhoseini, S.H., 2017. "A novel configuration of natural gas diffusion burners to enhance optical, thermal and radiative characteristics of flame and reduce NOx emission," Energy, Elsevier, vol. 132(C), pages 41-48.
    2. Pourhoseini, S.H., 2020. "Enhancement of radiation characteristics and reduction of NOx emission in natural gas flame through silver-water nanofluid injection," Energy, Elsevier, vol. 194(C).
    3. Liu, Jian & Song, Yidan & Xie, Gongnan & Sunden, Bengt, 2015. "Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions," Energy, Elsevier, vol. 79(C), pages 1-19.
    4. Li, Xin & Hu, Longhua & Shang, Fengju, 2018. "Flame downwash transition and its maximum length with increasing fuel supply of non-premixed jet in cross flow," Energy, Elsevier, vol. 164(C), pages 298-305.
    5. Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
    6. Carlo Cravero & Alessandro Lamberti & Luca Poggio, 2023. "CFD Prediction of a Double Impulse Burner for Glass Furnaces," Energies, MDPI, vol. 16(11), pages 1-17, May.
    7. Lawal, Mohammed S. & Fairweather, Michael & Gogolek, Peter & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed & Williams, Alan, 2013. "CFD predictions of wake-stabilised jet flames in a cross-flow," Energy, Elsevier, vol. 53(C), pages 259-269.
    8. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:2:p:385-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.