Participation of electric vehicle charging station aggregators in the day-ahead energy market using demand forecasting and uncertainty-based pricing
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.136299
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
- Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
- Xu, Maosheng & Gao, Shan & Zheng, Junyi & Huang, Xueliang & Wu, Chuanshen, 2024. "Day-ahead electric vehicle charging behavior forecasting and schedulable capacity calculation for electric vehicle parking lot," Energy, Elsevier, vol. 309(C).
- Silva, Carlos A.M. & Bessa, Ricardo J., 2025. "Carbon-aware dynamic tariff design for electric vehicle charging stations with explainable stochastic optimization," Applied Energy, Elsevier, vol. 389(C).
- Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
- Cedillo, Mónica Hernández & Sun, Hongjian & Jiang, Jing & Cao, Yue, 2022. "Dynamic pricing and control for EV charging stations with solar generation," Applied Energy, Elsevier, vol. 326(C).
- Bampos, Zafeirios N. & Laitsos, Vasilis M. & Afentoulis, Konstantinos D. & Vagropoulos, Stylianos I. & Biskas, Pantelis N., 2024. "Electric vehicles load forecasting for day-ahead market participation using machine and deep learning methods," Applied Energy, Elsevier, vol. 360(C).
- Sagaria, Shemin & van der Kam, Mart & Boström, Tobias, 2025. "Vehicle-to-grid impact on battery degradation and estimation of V2G economic compensation," Applied Energy, Elsevier, vol. 377(PB).
- Lehtola, Timo, 2025. "Vehicle-to-grid applications and battery cycle aging: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
- Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
- Yunpeng Guo & Weijia Liu & Fushuan Wen & Abdus Salam & Jianwei Mao & Liang Li, 2017. "Bidding Strategy for Aggregators of Electric Vehicles in Day-Ahead Electricity Markets," Energies, MDPI, vol. 10(1), pages 1-20, January.
- Lee, Sangyoon & Choi, Dae-Hyun, 2021. "Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach," Applied Energy, Elsevier, vol. 304(C).
- Wang, Lei & Fu, Zhong-Lin & Guo, Wei & Liang, Ruo-Yu & Shao, Hong-Yu, 2020. "What influences sales market of new energy vehicles in China? Empirical study based on survey of consumers’ purchase reasons," Energy Policy, Elsevier, vol. 142(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Shafie-khah, Miadreza, 2025. "Risk-averse frequency regulation strategy of electric vehicle aggregator considering multiple uncertainties," Applied Energy, Elsevier, vol. 382(C).
- Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
- Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
- Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
- Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness," Applied Energy, Elsevier, vol. 360(C).
- Yin, Wanjun & Liang, Wenbin & Ji, Jianbo, 2024. "Study on charge and discharge control strategy of improved PSO for EV," Energy, Elsevier, vol. 304(C).
- Chen, Runxin & Song, Dongran & Liao, Liqing & Yang, Jian & Dong, Mi & Talaat, M. & Elkholy, M.H., 2025. "Feedback correction scheduling strategy for electric vehicles based on multi-regional agent master-slave and evolutionary hybrid game," Energy, Elsevier, vol. 319(C).
- Brodnicke, Linda & Kachirayil, Febin & Gabrielli, Paolo & Sansavini, Giovanni & McKenna, Russell, 2025. "Transforming decentralized energy systems: Flexible EV charging and its impact across urbanization degrees," Applied Energy, Elsevier, vol. 384(C).
- Monica Alonso & Hortensia Amaris & David Martin & Arturo de la Escalera, 2023. "Proximal Policy Optimization for Energy Management of Electric Vehicles and PV Storage Units," Energies, MDPI, vol. 16(15), pages 1-20, July.
- Zhao, Zhonghao & Lee, Carman K.M. & Yan, Xiaoyuan & Wang, Haonan, 2024. "Reinforcement learning for electric vehicle charging scheduling: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
- Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
- Boyu Xiang & Zhengyang Zhou & Shukun Gao & Guoping Lei & Zefu Tan, 2024. "A Planning Method for Charging Station Based on Long-Term Charging Load Forecasting of Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-20, December.
- Xu, Wenyan & Mo, Wenting, 2024. "Institutional unlocking or technological unlocking? The logic of carbon unlocking in the new energy vehicle industry in China," Energy Policy, Elsevier, vol. 195(C).
- Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024.
"Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study,"
Resource and Energy Economics, Elsevier, vol. 76(C).
- Tong Zhang & Paul J. Burke & Qi Wang, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Departmental Working Papers 2024-1, The Australian National University, Arndt-Corden Department of Economics.
- Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
- Zhiwei Liao & Wenjuan Tao & Bowen Wang & Ye Liu, 2024. "Bidding Strategy for Wind and Thermal Power Joint Participation in the Electricity Spot Market Considering Uncertainty," Energies, MDPI, vol. 17(7), pages 1-19, April.
- Cai, Jinyang & Zhu, Mengze & Wu, Jian & Chen, Xueli & Xu, Junjie & Shen, Zhi-Yang, 2025. "Evaluating the impact of new energy vehicle subsidies on urban carbon emissions: Evidence from 261 Chinese cities," Renewable Energy, Elsevier, vol. 240(C).
- Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Huang, Yuhan, 2024. "Effects of intermittent pulsating flow on the performance of multi-channel cold plate in electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 294(C).
- Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
- Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225019413. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.