IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001739.html
   My bibliography  Save this article

Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness

Author

Listed:
  • Zhang, Kaizhe
  • Xu, Yinliang
  • Sun, Hongbin

Abstract

With the popularity of electric vehicles (EVs) in urban areas, the effective utilization of their charging flexibility in active distribution networks (ADNs) has drawn wide attentions. This paper proposes a bilevel model for the collaborative operation of ADNs with multiple charging stations (CSs) considering EV drivers' willingness. In the upper level, the distribution system operator (DSO) minimizes the total operational cost of ADNs and sets the optimal energy and reserve prices to trade with CSs under loads and market uncertainties. In the lower level, the aggregated model of EVs including drivers' response willingness is firstly established. Then, CSs minimize their own costs by adjusting bidding quantities and setting optimal incentive prices for EV drivers. Further, the developed bilevel model considering responsivities of EV drivers and various uncertainties is transformed into a tractable single level problem via the deterministic reformulation, Karush-Kuhn–Tucker (KKT) conditions and linearization method. Finally, numerical studies show that the proposed method can facilitate the DSO, CSs, EV drivers to reduce 3.7%, 20%, 9.6% total costs on average and improve the network security of ADNs under various uncertainties. Moreover, the scalability of the proposed approach is verified in the IEEE 123-bus DN with the computation time less than 600 s, which satisfies the computational efficiency requirement for the ADN day-ahead optimal scheduling.

Suggested Citation

  • Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001739
    DOI: 10.1016/j.apenergy.2024.122790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.