IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224038337.html
   My bibliography  Save this article

Multi-scale extended exergy analysis of the “system Romania”: A tool for monitoring the UN-2030 SDGs

Author

Listed:
  • Mamut, Eden
  • Sciubba, Enrico

Abstract

The paper describes an application of the Extended Exergy Accounting method (EEA in the following) to the calculation of the total amount of primary resources used (i.e., consumed) at country level in Romania. A distinctive novelty of EEA is the inclusion in the calculation of the so-called Externalities, i.e., of the monetary fluxes within the system and of the Labour intensity: both quantities are reduced, via an original modelling technique, to flows of primary resources, so that the global consumption of the Country is expressed in terms of the “load” it exerts on the resources available in the Biosphere and in the immediate planetary surroundings. Performing an EEA analysis requires as a first step the calculation of the global mass & energy balances at country level: the results (material and immaterial flows) are then converted into their respective exergy values. Exergy is a non-conserved thermodynamic quantity, and the outcome of this step (Exergy Analysis, ExA) already pinpoints the areas in which irreversibilities affect the conversion of primary resources into final goods and services (e.g., how many kWh of primary energy are embodied in 1 unit of a commodity). The EEA adds another fundamental step: using an ad hoc model to describe the exergy flows in-and-out of the Country, two empirical parameters are derived that account for the primary equivalent exergy required to generate 1 unit of monetary circulation (eeK, kJ/€) and for the primary equivalent exergy required to generate 1 “unit of Labour”, i.e., 1 workhour (eeL, kJ/workhour). For any production line for which sufficiently disaggregated information is available, these two parameters allow for the calculation of a cost proper, expressed in kWh of primary (exergy) resource per unit of any produced commodity. The method applies both to material goods and immaterial “commodities and services”. As an additional feature, EEA uses a remediation model to calculate the primary exergy “cost” of the (near) annihilation of environmental damage caused by the effluents and wastes.

Suggested Citation

  • Mamut, Eden & Sciubba, Enrico, 2025. "Multi-scale extended exergy analysis of the “system Romania”: A tool for monitoring the UN-2030 SDGs," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224038337
    DOI: 10.1016/j.energy.2024.134055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224038337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    2. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    3. Sciubba, Enrico, 2011. "A revised calculation of the econometric factors α- and β for the Extended Exergy Accounting method," Ecological Modelling, Elsevier, vol. 222(4), pages 1060-1066.
    4. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    5. Morris, David R. & Szargut, Jan, 1986. "Standard chemical exergy of some elements and compounds on the planet earth," Energy, Elsevier, vol. 11(8), pages 733-755.
    6. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    7. David Lin & Laurel Hanscom & Adeline Murthy & Alessandro Galli & Mikel Evans & Evan Neill & Maria Serena Mancini & Jon Martindill & Fatime-Zahra Medouar & Shiyu Huang & Mathis Wackernagel, 2018. "Ecological Footprint Accounting for Countries: Updates and Results of the National Footprint Accounts, 2012–2018," Resources, MDPI, vol. 7(3), pages 1-22, September.
    8. Depraiter, Lisa & Goutte, Stephane, 2023. "The role and challenges of rare earths in the energy transition," Resources Policy, Elsevier, vol. 86(PB).
    9. Barbier, Edward B. & Burgess, Joanne C., 2017. "The sustainable development goals and the systems approach to sustainability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-23.
    10. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
    11. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
    12. repec:hal:wpaper:halshs-04126172 is not listed on IDEAS
    13. Biondi, Alfonso, 2022. "A contribution to the search for a thermodynamics-based sustainability indicator: Extended Exergy Analysis of the Italian system (1990–2012) and comparison with other indicators," Energy, Elsevier, vol. 244(PB).
    14. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    15. Ptasinski, K.J. & Koymans, M.N. & Verspagen, H.H.G., 2006. "Performance of the Dutch Energy Sector based on energy, exergy and Extended Exergy Accounting," Energy, Elsevier, vol. 31(15), pages 3135-3144.
    16. Valero, Antonio & Uche, Javier & Valero, Alicia & Martínez, Amaya, 2009. "Physical Hydronomics: Application of the exergy analysis to the assessment of environmental costs of water bodies. The case of the inland basins of Catalonia," Energy, Elsevier, vol. 34(12), pages 2101-2107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    2. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    3. Biondi, Alfonso, 2022. "A contribution to the search for a thermodynamics-based sustainability indicator: Extended Exergy Analysis of the Italian system (1990–2012) and comparison with other indicators," Energy, Elsevier, vol. 244(PB).
    4. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    5. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    6. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    7. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    8. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    9. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
    10. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    11. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    12. Enrico Sciubba, 2012. "A Thermodynamically Correct Treatment of Externalities with an Exergy-Based Numeraire," Sustainability, MDPI, vol. 4(5), pages 1-25, May.
    13. Sciubba, Enrico, 2019. "Exergy-based ecological indicators: From Thermo-Economics to cumulative exergy consumption to Thermo-Ecological Cost and Extended Exergy Accounting," Energy, Elsevier, vol. 168(C), pages 462-476.
    14. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
    15. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    16. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    17. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    18. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    19. Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
    20. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224038337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.