IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003748.html
   My bibliography  Save this article

A novel WaveNet-GRU deep learning model for PEM fuel cells degradation prediction based on transfer learning

Author

Listed:
  • Izadi, Mohammad Javad
  • Hassani, Pourya
  • Raeesi, Mehrdad
  • Ahmadi, Pouria

Abstract

Precise prediction of Remaining Useful Life (RUL) within the transportation industry is essential for cost reduction and enhanced energy efficiency, focusing on extending the operational lifespan of proton exchange membrane fuel cells (PEMFCs). In pursuit of this objective, this study employs data-driven prediction methodologies centered on deep neural networks and transfer learning. The fundamental premise is that these approaches hinge on the compatibility of functional conditions across diverse datasets. Multiple strategies, amalgamating transfer learning, and deep neural networks, are introduced to forecast the PEMFC stack's behavior and its associated RUL. Network hyperparameters are optimized through Bayesian optimization, targeting root-mean-square error (RMSE) minimization in voltage predictions. The efficacy of these prediction techniques is evaluated through essential performance metrics, including the mean absolute percentage error (MAPE), RMSE, and coefficient of determination (R2), applied to both voltage predictions and RUL estimations. For the first time, a WaveNet-GRU model has been developed. Comparative assessment of models trained on 50% of the dataset underscores its supremacy. This model attains R2, RMSE, and MAPE scores of 99.1, 2.16E-4, and 0.166E-1, respectively, in predicting stack voltage. Also, RUL has increased by 21% compared to the best contemporary research. The WaveNet-GRU model demonstrates exceptional transfer learning capabilities when applied to stacks influenced by current ripples. In this context, it achieves optimal R2, RMSE, and MAPE values of 99.69, 1.37E-4, and 0.31E-1, respectively.

Suggested Citation

  • Izadi, Mohammad Javad & Hassani, Pourya & Raeesi, Mehrdad & Ahmadi, Pouria, 2024. "A novel WaveNet-GRU deep learning model for PEM fuel cells degradation prediction based on transfer learning," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003748
    DOI: 10.1016/j.energy.2024.130602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.