IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261924025819.html
   My bibliography  Save this article

An explicit predictive controller for fuel-cell electric vehicles incorporating the hierarchical architecture

Author

Listed:
  • Jiang, Zewei
  • Hou, Zhuoran
  • Chu, Liang
  • Zhao, Di
  • Jiang, Jingjing
  • Yang, Jun
  • Zhang, Yuanjian

Abstract

In light of the severity of global climate change and the energy crisis, fuel cell electric vehicles (FCEVs) have garnered significant attention as a potential solution. Integrating advanced energy management strategies (EMSs) into FCEVs can effectively optimize the energy consumption performance of the highly nonlinear powertrain across various driving conditions. In this paper, a hierarchical explicit model predictive control energy management strategy (H-EMPC EMS) is proposed to enhance the economic performance of FCEVs and ensure control robustness across diverse driving conditions. Firstly, a hierarchical control architecture is developed to improve the adaptability of the EMS to diverse driving conditions. The upper layer performs driving conditions recognition and operation modes switching by observing the vehicle state. The lower layer determines power distribution throughout the powertrain. Secondly, an explicit MPC (eMPC) controller is developed to make the powertrain promptly respond to the power demand for the vehicle. To bolster the real-time application capability of the controller, systematic optimization is carried out by combining eMPC offline control law generation and online control law invocation. Thirdly, a feedback compensator is integrated into the controller to mitigate the effects of parameter variations on control and strengthen the robustness of the EMS. Finally, simulation evaluations and hardware-in-the-loop (HIL) tests demonstrate that the proposed H-EMPC EMS can improve economic performance and guarantee real-time performance for the studied FCEV. Compared with other baselines, the energy-saving capability is remarkable, showcasing its promising performance.

Suggested Citation

  • Jiang, Zewei & Hou, Zhuoran & Chu, Liang & Zhao, Di & Jiang, Jingjing & Yang, Jun & Zhang, Yuanjian, 2025. "An explicit predictive controller for fuel-cell electric vehicles incorporating the hierarchical architecture," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261924025819
    DOI: 10.1016/j.apenergy.2024.125197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    2. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    3. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    4. Zou Yuan & Liu Teng & Sun Fengchun & Huei Peng, 2013. "Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle," Energies, MDPI, vol. 6(4), pages 1-14, April.
    5. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    6. Jinquan, Guo & Hongwen, He & Jiankun, Peng & Nana, Zhou, 2019. "A novel MPC-based adaptive energy management strategy in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 175(C), pages 378-392.
    7. Remzi Can Samsun & Michael Rex & Laurent Antoni & Detlef Stolten, 2022. "Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives," Energies, MDPI, vol. 15(14), pages 1-34, July.
    8. Ahmadi, Pouria & Raeesi, Mehrdad & Changizian, Sina & Teimouri, Aidin & Khoshnevisan, Alireza, 2022. "Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques," Energy, Elsevier, vol. 259(C).
    9. Li, Xunming & Han, Lijin & Liu, Hui & Wang, Weida & Xiang, Changle, 2019. "Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm," Energy, Elsevier, vol. 172(C), pages 1161-1178.
    10. Lin, Xinyou & Zeng, Songrong & Li, Xuefan, 2021. "Online correction predictive energy management strategy using the Q-learning based swarm optimization with fuzzy neural network," Energy, Elsevier, vol. 223(C).
    11. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    12. Song, Ke & Wang, Xiaodi & Li, Feiqiang & Sorrentino, Marco & Zheng, Bailin, 2020. "Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability," Energy, Elsevier, vol. 205(C).
    13. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    14. Wang, Hanchen & Ye, Yiming & Zhang, Jiangfeng & Xu, Bin, 2023. "A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle," Energy, Elsevier, vol. 266(C).
    15. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    16. Dongwei Yao & Xinwei Lu & Xiangyun Chao & Yongguang Zhang & Junhao Shen & Fanlong Zeng & Ziyan Zhang & Feng Wu, 2023. "Adaptive Equivalent Fuel Consumption Minimization Based Energy Management Strategy for Extended-Range Electric Vehicle," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    17. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives," Energies, MDPI, vol. 13(21), pages 1-28, November.
    18. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    19. Simons, Andrew & Bauer, Christian, 2015. "A life-cycle perspective on automotive fuel cells," Applied Energy, Elsevier, vol. 157(C), pages 884-896.
    20. Mubashir Rasool & Muhammad Adil Khan & Runmin Zou, 2023. "A Comprehensive Analysis of Online and Offline Energy Management Approaches for Optimal Performance of Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-33, April.
    21. Hu, Jie & Liu, Di & Du, Changqing & Yan, Fuwu & Lv, Chen, 2020. "Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition," Energy, Elsevier, vol. 198(C).
    22. Zeng, Tao & Zhang, Caizhi & Hu, Minghui & Chen, Yan & Yuan, Changrong & Chen, Jingrui & Zhou, Anjian, 2018. "Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle," Energy, Elsevier, vol. 165(PB), pages 187-197.
    23. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    24. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    25. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).
    26. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    27. repec:plo:pone00:0208071 is not listed on IDEAS
    28. Chen, Zhihang & Liu, Yonggang & Zhang, Yuanjian & Lei, Zhenzhen & Chen, Zheng & Li, Guang, 2022. "A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    2. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    3. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    4. Wei, Changyin & Chen, Yong & Li, Xiaoyu & Lin, Xiaozhe, 2022. "Integrating intelligent driving pattern recognition with adaptive energy management strategy for extender range electric logistics vehicle," Energy, Elsevier, vol. 247(C).
    5. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Gao, Renjing & Zhou, Guangli & Wang, Qi, 2024. "Real-time three-level energy management strategy for series hybrid wheel loaders based on WG-MPC," Energy, Elsevier, vol. 295(C).
    7. Iqbal, Najam & Wang, Hu & Zheng, Zunqing & Yao, Mingfa, 2024. "Reinforcement learning-based heuristic planning for optimized energy management in power-split hybrid electric heavy duty vehicles," Energy, Elsevier, vol. 302(C).
    8. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    9. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    10. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    11. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    12. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    13. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    14. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    15. Zhou, Hongxu & Yu, Zhongwei & Wu, Xiaohua & Fan, Zhanfeng & Yin, Xiaofeng & Zhou, Lingxue, 2023. "Dynamic programming improved online fuzzy power distribution in a demonstration fuel cell hybrid bus," Energy, Elsevier, vol. 284(C).
    16. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Fabrizio Donatantonio & Alessandro Ferrara & Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2022. "Novel Approaches for Energy Management Strategies of Hybrid Electric Vehicles and Comparison with Conventional Solutions," Energies, MDPI, vol. 15(6), pages 1-22, March.
    18. Xu, Hao & Chen, Feng & Cheng, Jinping & Bai, Yucai & Zhao, Shuqing & Wu, Yiheng & Lu, Yin, 2025. "Hydrogen powered heavy-duty trucks may contribute CO2 emission increase instead of reduction under current hydrogen production structure in China," Energy, Elsevier, vol. 315(C).
    19. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    20. Chen, Jiayu & Kuboyama, Tatsuya & Shen, Tielong, 2025. "Collective behavior information-based design approach to energy management strategy for large-scale population of HEVs," Applied Energy, Elsevier, vol. 377(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261924025819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.