IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10207-d890376.html
   My bibliography  Save this article

Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand

Author

Listed:
  • Jaikumar Shanmuganathan

    (Department of Electrical & Electronics Engineering, Anna University Regional Campus Coimbatore, Coimbatore 641047, India)

  • Aruldoss Albert Victoire

    (Department of Electrical & Electronics Engineering, Anna University Regional Campus Coimbatore, Coimbatore 641047, India)

  • Gobu Balraj

    (Assistant Engineer, Tamilnadu Generation and Distribution Corporation Ltd., Tamilnadu 641012, India)

  • Amalraj Victoire

    (Department of Computer Applications, Sri Manakula Vinayagar Engineering College, Pondicherry 605107, India)

Abstract

The immense growth and penetration of electric vehicles has become a major component of smart transport systems; thereby decreasing the greenhouse gas emissions that pollute the environment. With the increased volumes of electric vehicles (EV) in the past few years, the charging demand of these vehicles has also become an immediate requirement. Due to which, the prediction of the demand of electric vehicle charging is of key importance so that it minimizes the burden on the electric grids and also offers reduced costs of charging. In this research study, an attempt is made to develop a novel deep learning (DL)-based long-short term memory (LSTM) recurrent neural network predictor model to carry out the forecasting of electric vehicle charging demand. The parameters of the new deep long-short term memory (DLSTM) neural predictor model are tuned for its optimal values using the classic arithmetic optimization algorithm (AOA) and the input time series data are decomposed so as to maintain their features using the empirical mode decomposition (EMD). The novel EMD—AOA—DLSTM neural predictor modeled in this study overcomes the vanishing and exploding gradients of basic recurrent neural learning and is tested for its superiority on the EV charging dataset of Georgia Tech, Atlanta, USA. At the time of simulation, the best results of 97.14% prediction accuracy with a mean absolute error of 0.1083 and a root mean square error of 2.0628 × 10 −5 are attained. Furthermore, the mean absolute error was evaluated to be 0.1083 and the mean square error pertaining to 4.25516 × 10 −10 . The results prove the efficacy of the prediction metrics computed with the novel deep learning LSTM neural predictor for the considered dataset in comparison with the previous techniques from existing works.

Suggested Citation

  • Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10207-:d:890376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruisheng Wang & Qiang Xing & Zhong Chen & Ziqi Zhang & Bo Liu, 2022. "Modeling and Analysis of Electric Vehicle User Behavior Based on Full Data Chain Driven," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    2. Lin, Xinyou & Wu, Jiayun & Wei, Yimin, 2021. "An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC," Energy, Elsevier, vol. 234(C).
    3. Asensio, E. Maximiliano & Magallán, Guillermo A. & Pérez, Laura & De Angelo, Cristian H., 2022. "Short-term power demand prediction for energy management of an electric vehicle based on batteries and ultracapacitors," Energy, Elsevier, vol. 247(C).
    4. Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
    5. Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan, 2021. "Electric vehicle routing problem with machine learning for energy prediction," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 24-55.
    6. Lin, Xinyou & Zeng, Songrong & Li, Xuefan, 2021. "Online correction predictive energy management strategy using the Q-learning based swarm optimization with fuzzy neural network," Energy, Elsevier, vol. 223(C).
    7. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    8. Zhao, Yang & Wang, Zhenpo & Shen, Zuo-Jun Max & Sun, Fengchun, 2021. "Data-driven framework for large-scale prediction of charging energy in electric vehicles," Applied Energy, Elsevier, vol. 282(PB).
    9. Sheik Mohammed S. & Femin Titus & Sudhakar Babu Thanikanti & Sulaiman S. M. & Sanchari Deb & Nallapaneni Manoj Kumar, 2022. "Charge Scheduling Optimization of Plug-In Electric Vehicle in a PV Powered Grid-Connected Charging Station Based on Day-Ahead Solar Energy Forecasting in Australia," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    10. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation," Applied Energy, Elsevier, vol. 304(C).
    11. Yan, Qing-dong & Chen, Xiu-qi & Jian, Hong-chao & Wei, Wei & Wang, Wei-da & Wang, Heng, 2022. "Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck," Energy, Elsevier, vol. 238(PC).
    12. Jeffrey O Agushaka & Absalom E Ezugwu, 2021. "Advanced arithmetic optimization algorithm for solving mechanical engineering design problems," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-29, August.
    13. Aaron Rabinowitz & Farhang Motallebi Araghi & Tushar Gaikwad & Zachary D. Asher & Thomas H. Bradley, 2021. "Development and Evaluation of Velocity Predictive Optimal Energy Management Strategies in Intelligent and Connected Hybrid Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-22, September.
    14. Wu, Chuanshen & Jiang, Sufan & Gao, Shan & Liu, Yu & Han, Haiteng, 2022. "Charging demand forecasting of electric vehicles considering uncertainties in a microgrid," Energy, Elsevier, vol. 247(C).
    15. Chen, Zhihang & Liu, Yonggang & Zhang, Yuanjian & Lei, Zhenzhen & Chen, Zheng & Li, Guang, 2022. "A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 243(C).
    16. Shi, Jiaqi & Liu, Nian & Huang, Yujing & Ma, Liya, 2022. "An Edge Computing-oriented Net Power Forecasting for PV-assisted Charging Station: Model Complexity and Forecasting Accuracy Trade-off," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marouane Adnane & Ahmed Khoumsi & João Pedro F. Trovão, 2023. "Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey," Energies, MDPI, vol. 16(13), pages 1-39, June.
    2. Hou, Zhuoran & Guo, Jianhua & Li, Jihao & Hu, Jinchen & Sun, Wen & Zhang, Yuanjian, 2023. "Exploration the pathways of connected electric vehicle design: A vehicle-environment cooperation energy management strategy," Energy, Elsevier, vol. 271(C).
    3. Sanchari Deb & Xiao-Zhi Gao, 2022. "Prediction of Charging Demand of Electric City Buses of Helsinki, Finland by Random Forest," Energies, MDPI, vol. 15(10), pages 1-18, May.
    4. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    5. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    6. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
    7. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    9. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    10. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    11. Heping Fang & Xiaopeng Fu & Zhiyong Zeng & Kunhua Zhong & Shuguang Liu, 2022. "An Improved Arithmetic Optimization Algorithm and Its Application to Determine the Parameters of Support Vector Machine," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    12. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    13. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    14. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    15. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    16. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    17. Witsarut Achariyaviriya & Wongkot Wongsapai & Kittitat Janpoom & Tossapon Katongtung & Yuttana Mona & Nakorn Tippayawong & Pana Suttakul, 2023. "Estimating Energy Consumption of Battery Electric Vehicles Using Vehicle Sensor Data and Machine Learning Approaches," Energies, MDPI, vol. 16(17), pages 1-14, September.
    18. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "Data Transformation in the Predict-Then-Optimize Framework: Enhancing Decision Making under Uncertainty," Mathematics, MDPI, vol. 11(17), pages 1-12, September.
    19. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    20. Simone Balmelli & Francesco Moresino, 2023. "Coordination of Plug-In Electric Vehicle Charging in a Stochastic Framework: A Decentralized Tax/Incentive-Based Mechanism to Reach Global Optimality," Mathematics, MDPI, vol. 11(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10207-:d:890376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.