IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022088.html
   My bibliography  Save this article

Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck

Author

Listed:
  • Yan, Qing-dong
  • Chen, Xiu-qi
  • Jian, Hong-chao
  • Wei, Wei
  • Wang, Wei-da
  • Wang, Heng

Abstract

Accurate required power forecasting is critical to ensure the recharge mileage and to optimize the energy utilization of heavy-duty vehicles. This paper proposed an artificial intelligence model predictive control framework for the energy management system (EMS) of the series hybrid electric vehicle with terrain and load information. It aims to achieve optimal energy distribution with increased required power prediction accuracy and optimized SoC sequence by fast analyzing high-dimensional information. Firstly, the required power is predicted by a deep inference framework (LASSO-CNN), which integrates the least absolute shrinkage selection operator (LASSO) and convolutional neural network (CNN). Secondly, the optimal SoC sequence on hilly roads is planned in advance, with the SHEV's recuperated energy being predicted based on the current driving state. Finally, MPC-based predictive energy management is achieved by combining required power prediction and SoC planning with rolling optimization and feedback correction. Simulation results show that the fuel consumption is 2.51% lower than the deterministic dynamic programming-based controller, and the computation time is decreased by 48.1%. These promising results suggest that the proposed predictive energy management strategy can play a critical role in predicting power demand, which further reduces the fuel consumption of the hybrid electric mining truck.

Suggested Citation

  • Yan, Qing-dong & Chen, Xiu-qi & Jian, Hong-chao & Wei, Wei & Wang, Wei-da & Wang, Heng, 2022. "Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022088
    DOI: 10.1016/j.energy.2021.121960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    2. Zou Yuan & Liu Teng & Sun Fengchun & Huei Peng, 2013. "Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle," Energies, MDPI, vol. 6(4), pages 1-14, April.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Yoo-Geun Ham & Jeong-Hwan Kim & Jing-Jia Luo, 2019. "Deep learning for multi-year ENSO forecasts," Nature, Nature, vol. 573(7775), pages 568-572, September.
    5. Li, Xunming & Han, Lijin & Liu, Hui & Wang, Weida & Xiang, Changle, 2019. "Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm," Energy, Elsevier, vol. 172(C), pages 1161-1178.
    6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    7. Xiaolei Ma & Haiyang Yu & Yunpeng Wang & Yinhai Wang, 2015. "Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    8. Li, Gaopeng & Zhang, Jieli & He, Hongwen, 2017. "Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 194(C), pages 578-587.
    9. Yuan Zou & Dong-ge Li & Xiao-song Hu, 2012. "Optimal Sizing and Control Strategy Design for Heavy Hybrid Electric Truck," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-15, November.
    10. He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
    11. Hongwen, He & Jinquan, Guo & Jiankun, Peng & Huachun, Tan & Chao, Sun, 2018. "Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 95-107.
    12. Harrington, Winston & Krupnick, Alan, 2012. "Improving Fuel Economy in Heavy-Duty Vehicles," RFF Working Paper Series dp-12-02, Resources for the Future.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dengfeng Zhao & Haiyang Li & Junjian Hou & Pengliang Gong & Yudong Zhong & Wenbin He & Zhijun Fu, 2023. "A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption," Energies, MDPI, vol. 16(14), pages 1-20, July.
    2. Ren, Fei & Tian, Chenlu & Zhang, Guiqing & Li, Chengdong & Zhai, Yuan, 2022. "A hybrid method for power demand prediction of electric vehicles based on SARIMA and deep learning with integration of periodic features," Energy, Elsevier, vol. 250(C).
    3. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    4. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    6. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    7. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    8. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    9. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    10. Stephan Brunow & Stefanie Lösch & Ostap Okhrin, 2022. "Labor market tightness and individual wage growth: evidence from Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 56(1), pages 1-21, December.
    11. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    12. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    13. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    14. Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
    15. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    16. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    17. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    18. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    19. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    20. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.