IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225017359.html
   My bibliography  Save this article

Design and test of adaptive energy management strategy for plug-in hybrid electric vehicle considering traffic information

Author

Listed:
  • Shi, Dehua
  • Li, Shiqi
  • Xu, Han
  • Wang, Shaohua
  • Wang, Limei

Abstract

—Intelligence provides external information for plug-in hybrid electric vehicles (PHEVs) to optimize the energy management strategy, yet effective application of information remains challenging. To this aim, the traffic scenario model based on practical sampled traffic data is established to analyze the impacts of different traffic information. On this basis, the adaptive energy management strategy is proposed. The SOC allocation is planned using the back-propagation (BP) neural network, in which the inputs of the traffic information is obtained by analyzing correlations between different traffic indexes and the power demand, as well as their impacts on the optimal SOC planning accuracy. Ulteriorly, the adaptive equivalent consumption minimization strategy (AECMS) is proposed to track the planned SOC by calculating the engine and motor torque. The equivalence factor (EF) of AECMS is adjusted using a fuzzy controller by taking the traffic information and the planned SOC as inputs. The established traffic scenario is finally introduced into the hardware-in-the-loop (HIL) test platform, together with a vehicle controller, to evaluate the performance of the proposed strategy. Research results demonstrate that the proposed strategy only increase the fuel consumption by 2.24–4.31 % compared with global optimal results.

Suggested Citation

  • Shi, Dehua & Li, Shiqi & Xu, Han & Wang, Shaohua & Wang, Limei, 2025. "Design and test of adaptive energy management strategy for plug-in hybrid electric vehicle considering traffic information," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017359
    DOI: 10.1016/j.energy.2025.136093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Xinyou & Wu, Jiayun & Wei, Yimin, 2021. "An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC," Energy, Elsevier, vol. 234(C).
    2. Min, Qingyun & Li, Junqiu & Liu, Bo & Li, Jianwei & Sun, Fengchun & Sun, Chao, 2021. "Guided model predictive control for connected vehicles with hybrid energy systems," Energy, Elsevier, vol. 230(C).
    3. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    5. Xuezhao Zhang & Zijie Chen & Wenxiao Wang & Xiaofen Fang, 2024. "Prediction Method of PHEV Driving Energy Consumption Based on the Optimized CNN BiLSTM Attention Network," Energies, MDPI, vol. 17(12), pages 1-21, June.
    6. Kong, Yan & Xu, Nan & Liu, Qiao & Sui, Yan & Yue, Fenglai, 2023. "A data-driven energy management method for parallel PHEVs based on action dependent heuristic dynamic programming (ADHDP) model," Energy, Elsevier, vol. 265(C).
    7. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    8. Lin, Xinyou & Huang, Hao & Xu, Xinhao & Xie, Liping, 2024. "Dynamic programming solutions extracted SOC-trajectory online learning generation algorithm based approximate global optimization control strategy for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 295(C).
    9. Chen, Zhihang & Liu, Yonggang & Zhang, Yuanjian & Lei, Zhenzhen & Chen, Zheng & Li, Guang, 2022. "A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 243(C).
    10. Wang, Shaohua & Zhang, Kaimei & Shi, Dehua & Li, Meng & Yin, Chunfang, 2024. "Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm," Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shaohua & Zhang, Kaimei & Shi, Dehua & Li, Meng & Yin, Chunfang, 2024. "Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm," Energy, Elsevier, vol. 286(C).
    2. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    3. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).
    4. Li, Jie & Liu, Yonggang & Cheng, Jun & Fotouhi, Abbas & Chen, Zheng, 2024. "Eco-driving control for connected plug-in hybrid electric vehicles in urban scenarios with enhanced lane change engagement," Energy, Elsevier, vol. 310(C).
    5. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    6. Hou, Zhuoran & Guo, Jianhua & Chu, Liang & Hu, Jincheng & Chen, Zheng & Zhang, Yuanjian, 2023. "Exploration the route of information integration for vehicle design: A knowledge-enhanced energy management strategy," Energy, Elsevier, vol. 282(C).
    7. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    8. Shi, Xiuyong & Pan, Yunxin & Wei, Jiande & Liu, Hua & Hu, Xianzhi & Lv, Meng, 2024. "A single-stage SOC reference trajectory prediction method for series PHEV based on GRNN," Energy, Elsevier, vol. 313(C).
    9. Gao, Kai & Luo, Pan & Xie, Jin & Chen, Bin & Wu, Yue & Du, Ronghua, 2023. "Energy management of plug-in hybrid electric vehicles based on speed prediction fused driving intention and LIDAR," Energy, Elsevier, vol. 284(C).
    10. Xue, Jiaqi & Jiao, Xiaohong & Yu, Danmei & Zhang, Yahui, 2023. "Predictive hierarchical eco-driving control involving speed planning and energy management for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    11. Li, Jianwei & Liu, Jie & Yang, Qingqing & Wang, Tianci & He, Hongwen & Wang, Hanxiao & Sun, Fengchun, 2025. "Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    12. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    13. Zhang, Yahui & You, Xiongxiong & Song, Yunfeng & Zhao, Yahui & Wei, Zeyi & Jiao, Xiaohong, 2025. "Hierarchical eco-driving of connected hybrid electric vehicles: Integrating predictive cruise control and cost-to-go approximation-guided energy management," Energy, Elsevier, vol. 319(C).
    14. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    15. Chen, Yifan & Yang, Liuquan & Yang, Chao & Wang, Weida & Zha, Mingjun & Gao, Pu & Liu, Hui, 2024. "Real-time analytical solution to energy management for hybrid electric vehicles using intelligent driving cycle recognition," Energy, Elsevier, vol. 307(C).
    16. Zhang, Hao & Lei, Nuo & Chen, Boli & Li, Bingbing & Li, Rulong & Wang, Zhi, 2024. "Modeling and control system optimization for electrified vehicles: A data-driven approach," Energy, Elsevier, vol. 310(C).
    17. Cai, Xuan & Zhou, Wei & Cui, Zhiyong & Bai, Xuesong & Liu, Fan & Yu, Haiyang & Ren, Yilong, 2024. "An explicit State-of-Charge planning solution for plug-in hybrid electric vehicle based on low-granularity prior-knowledge," Energy, Elsevier, vol. 313(C).
    18. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    19. Lv, Chengkun & Lan, Zhu & Chang, Juntao & Yu, Daren, 2024. "Adaptive dynamic programming for ramjet intelligent tracking control via neural network-enhanced equilibrium manifold expansion estimator," Energy, Elsevier, vol. 309(C).
    20. Tian, Yang & Zhao, Yin & Wang, Zhong & Zhang, Yahui & Miao, Yusen & Zhang, Lipeng & Wen, Guilin & Zhang, Nong, 2024. "Non-dominated sorting artificial rabbit multi-objective sizing optimization for a conceptual powertrain of a 6 × 4 battery electric tractor truck," Energy, Elsevier, vol. 304(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.