IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029687.html
   My bibliography  Save this article

Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm

Author

Listed:
  • Wang, Shaohua
  • Zhang, Kaimei
  • Shi, Dehua
  • Li, Meng
  • Yin, Chunfang

Abstract

In response to the discrepancy between the mechanical-electric torque distribution rules used in the shifting calculation of plug-in hybrid electric vehicles and the actual operating conditions, this study focuses on a specific vehicle model known as the multi-gear and multi-mode parallel plug-in hybrid electric vehicle (MGMMP-PHEV). Various control parameters including vehicle speed, pedal opening, battery state of charge (SOC), and operating mode are taken into account by considering the impact of coordinated operation between the dual power sources and battery SOC. In order to address this issue, an enhanced dual-parameter shifting calculation principle and method are proposed, and an optimized shifting strategy is developed with the objective of achieving the highest system comprehensive efficiency and ensuring battery charge-discharge balance. The shifting points under each mode are optimized offline using the DIviding RECTangles (DIRECT) algorithm, and a multi-parameter fuzzy controller is introduced to dynamically adjust the shifting speed. The improved shifting strategy, implemented in Matlab/Simulink, is compared with the initial shifting strategy in terms of its economic performance. The results demonstrate that the DIRECT-optimized and dynamically adjusted fuzzy shifting strategy effectively maintains the balance of battery charge and discharge. Specifically, under the WLTC working condition, it achieves a 5.59 % reduction in fuel consumption compared to the dual-parameter shifting strategy. Furthermore, this optimized strategy leads to a slight increase in shifting delay and a decrease in shifting frequency, thus verifying the effectiveness and superiority of the proposed controller.

Suggested Citation

  • Wang, Shaohua & Zhang, Kaimei & Shi, Dehua & Li, Meng & Yin, Chunfang, 2024. "Research on economical shifting strategy for multi-gear and multi-mode parallel plug-in HEV based on DIRECT algorithm," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029687
    DOI: 10.1016/j.energy.2023.129574
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129574?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.