IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics036054422302738x.html
   My bibliography  Save this article

Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle

Author

Listed:
  • Ren, Xiaoxia
  • Ye, Jinze
  • Xie, Liping
  • Lin, Xinyou

Abstract

Energy management strategies play an essential role in improving fuel economy and extending battery lifetime for fuel cell hybrid electric vehicles. However, the traditional energy management strategy ignores the lifetime of the battery for good fuel economy. To overcome this drawback, a battery longevity-conscious energy management predictive control strategy is proposed based on the deep reinforcement learning algorithm predictive equivalent consumption minimization strategy (DRL-PECMS) in this study. To begin with, the back-propagation neural network is devised for predicting demand power, and the predictive equivalent consumption minimum strategy (PECMS) is proposed to improve the hydrogen consumption. Then, in order to improve the battery durability performance, the deep reinforcement learning algorithm is utilized to optimize the battery power and improve battery lifetime. Finally, numerical verification and hard-ware in the loop experiments are conducted to validate hydrogen consumption and battery durability performance of the proposed strategy. The validation results show that, compared with CD/CS and SQP(Sequential Quadratic Programming), the PECMS combined can achieve better fuel economy with the fuel consumption reduction by 55.6 % and 5.27 %, which effectively improves the fuel economy. The DRL-PECMS can reduce the effective Ah-throughput by 3.1 % compared with the PECMS. The numerous validations and comparisons demonstrate that the proposed strategy effectively accomplishes the trade-off optimization between energy consumption and battery durability performance.

Suggested Citation

  • Ren, Xiaoxia & Ye, Jinze & Xie, Liping & Lin, Xinyou, 2024. "Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302738x
    DOI: 10.1016/j.energy.2023.129344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302738X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302738x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.