IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1931-d1631871.html
   My bibliography  Save this article

Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges

Author

Listed:
  • Hui Xiang

    (State Grid Information and Telecommunication Group Co., Ltd., Beijing 100029, China)

  • Xiaolei Li

    (State Grid Information and Telecommunication Group Co., Ltd., Beijing 100029, China)

  • Xiao Liao

    (State Grid Information and Telecommunication Group Co., Ltd., Beijing 100029, China)

  • Wei Cui

    (State Grid Information and Telecommunication Group Co., Ltd., Beijing 100029, China)

  • Fengkai Liu

    (School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China)

  • Donghe Li

    (School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

In the context of the global active pursuit of sustainable development and the heightened priority placed on sustainable energy, renewable energy systems, as a crucial solution to energy crises and environmental challenges, are of increasing significance. The extensive development and utilization of renewable energy sources such as wind and solar have become the core driving force for promoting the transformation of the energy structure. The research and construction of energy storage systems have also become trends in future energy development. AI, with its powerful data-processing and intelligent decision-making capabilities, has been deeply integrated into multiple key aspects of renewable energy systems. This review fills a gap in the relevant literature by conducting an updated technological assessment of the application of AI technology in renewable energy systems including wind power systems, PV power systems, energy storage systems, and others. Moreover, this paper analyzes the security challenges of AI in renewable energy systems. The primary aim of this review is to identify the advantages and existing security challenges of introducing AI technology into renewable energy systems, so as to help improve the production efficiency and information security level of different forms of renewable energy systems.

Suggested Citation

  • Hui Xiang & Xiaolei Li & Xiao Liao & Wei Cui & Fengkai Liu & Donghe Li, 2025. "Artificial Intelligence in Renewable Energy Systems: Applications and Security Challenges," Energies, MDPI, vol. 18(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1931-:d:1631871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zongjun Yao & Tieyan Zhang & Qimin Wang & Yan Zhao & Rui Wang, 2022. "Short-Term Power Load Forecasting of Integrated Energy System Based on Attention-CNN-DBILSTM," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, March.
    2. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    3. Feng, Zhipeng & Liang, Ming & Zhang, Yi & Hou, Shumin, 2012. "Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation," Renewable Energy, Elsevier, vol. 47(C), pages 112-126.
    4. Seyed Poorya Mirfallah Lialestani & David Parcerisa & Mahjoub Himi & Abbas Abbaszadeh Shahri, 2022. "Generating 3D Geothermal Maps in Catalonia, Spain Using a Hybrid Adaptive Multitask Deep Learning Procedure," Energies, MDPI, vol. 15(13), pages 1-16, June.
    5. Yu, Quanqing & Nie, Yuwei & Guo, Shanshan & Li, Junfu & Zhang, Chengming, 2024. "Machine learning enables rapid state of health estimation of each cell within battery pack," Applied Energy, Elsevier, vol. 375(C).
    6. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    7. Zhang, Shiyao & Zhang, Shuyu & Yu, James J.Q. & Wei, Xuetao, 2024. "ST-AGNet: Dynamic power system state prediction with spatial–temporal attention graph-based network," Applied Energy, Elsevier, vol. 365(C).
    8. Anis ur Rehman & Muhammad Ali & Sheeraz Iqbal & Aqib Shafiq & Nasim Ullah & Sattam Al Otaibi, 2022. "Artificial Intelligence-Based Control and Coordination of Multiple PV Inverters for Reactive Power/Voltage Control of Power Distribution Networks," Energies, MDPI, vol. 15(17), pages 1-13, August.
    9. Diamantis Karakatsanis & Nicolaos Theodossiou, 2022. "Smart Hydropower Water Distribution Networks, Use of Artificial Intelligence Methods and Metaheuristic Algorithms to Generate Energy from Existing Water Supply Networks," Energies, MDPI, vol. 15(14), pages 1-21, July.
    10. Dongyu Wang & Xiwen Cui & Dongxiao Niu, 2022. "Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    11. Devasahayam, Sheila, 2023. "Deep learning models in Python for predicting hydrogen production: A comparative study," Energy, Elsevier, vol. 280(C).
    12. Fatemeh Hajimohammadali & Emanuele Crisostomi & Mauro Tucci & Nunzia Fontana, 2024. "Evaluating Deep Learning Networks Versus Hybrid Network for Smart Monitoring of Hydropower Plants," Energies, MDPI, vol. 17(22), pages 1-16, November.
    13. Rashmi Prava Das & Tushar Kanta Samal & Ashish Kr. Luhach & Anna M. Gil-Lafuente, 2023. "An Energy Efficient Evolutionary Approach for Smart City-Based IoT Applications," Mathematical Problems in Engineering, Hindawi, vol. 2023, pages 1-9, December.
    14. Yoan Villeneuve & Sara Séguin & Abdellah Chehri, 2023. "AI-Based Scheduling Models, Optimization, and Prediction for Hydropower Generation: Opportunities, Issues, and Future Directions," Energies, MDPI, vol. 16(8), pages 1-27, April.
    15. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    16. Bhavsar, S. & Pitchumani, R. & Ortega-Vazquez, M.A., 2021. "Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts," Applied Energy, Elsevier, vol. 293(C).
    17. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    18. Ben Qi & Jingang Liang & Jiejuan Tong, 2023. "Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective," Energies, MDPI, vol. 16(4), pages 1-27, February.
    19. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    20. Moraga, J. & Duzgun, H.S. & Cavur, M. & Soydan, H., 2022. "The Geothermal Artificial Intelligence for geothermal exploration," Renewable Energy, Elsevier, vol. 192(C), pages 134-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Hammerschmitt, Bruno Knevitz & Guarda, Fernando Guilherme Kaehler & Lucchese, Felipe Cirolini & Abaide, Alzenira da Rosa, 2022. "Complementary thermal energy generation associated with renewable energies using Artificial Intelligence," Energy, Elsevier, vol. 254(PB).
    3. Arsalan Masood & Ubaid Ahmed & Syed Zulqadar Hassan & Ahsan Raza Khan & Anzar Mahmood, 2025. "Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review," Sustainability, MDPI, vol. 17(6), pages 1-42, March.
    4. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    5. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    6. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    7. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    8. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    9. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    10. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    11. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    12. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    13. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    14. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    15. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    16. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    18. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    19. Dong, Ming & Shi, Jian & Shi, Qingxin, 2020. "Multi-year long-term load forecast for area distribution feeders based on selective sequence learning," Energy, Elsevier, vol. 206(C).
    20. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1931-:d:1631871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.