IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v386y2025ics0306261925003058.html
   My bibliography  Save this article

A knowledge transfer method for water faults diagnosis of proton exchange membrane fuel cell based on sample re-weighting

Author

Listed:
  • Gao, Shangrui
  • Sun, Zhendong
  • Wang, Yujie
  • Chen, Zonghai

Abstract

Diagnosing water faults in proton exchange membrane fuel cell (PEMFC) often suffers from a shortage of fault samples. To address this problem, this paper proposes an innovative knowledge transfer method for water faults diagnosis that combines prior knowledge with sample re-weighting (PK-SR). Firstly, artificial prior features extraction is performed, mapping raw samples to fault feature space. Then, the fault feature similarity between source and target domain is calculated based on the extracted fault features vectors. Subsequently, initial weights for samples are calculated and applied to modified TrAdaBoost algorithm, which updates sample weights based on both fault feature similarity and classifier prediction results. Finally, the high-precision water faults diagnosis task was achieved with insufficient faults data, and overfitting was essentially avoided. Through comparative analysis with the latest methods, the proposed PK-SR method has been verified to have significant performance advantages. To our knowledge, this is the first successful attempt to combine prior knowledge of PEMFC water faults with transfer learning method for knowledge transfer and taking into account support for edge computing devices.

Suggested Citation

  • Gao, Shangrui & Sun, Zhendong & Wang, Yujie & Chen, Zonghai, 2025. "A knowledge transfer method for water faults diagnosis of proton exchange membrane fuel cell based on sample re-weighting," Applied Energy, Elsevier, vol. 386(C).
  • Handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003058
    DOI: 10.1016/j.apenergy.2025.125575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925003058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Ran & Zhang, Caizhi & Dai, Haifeng & Bai, Yunfeng & Hao, Dong & Chen, Jinrui & Zhang, Bin, 2022. "Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters," Applied Energy, Elsevier, vol. 305(C).
    2. Izadi, Mohammad Javad & Hassani, Pourya & Raeesi, Mehrdad & Ahmadi, Pouria, 2024. "A novel WaveNet-GRU deep learning model for PEM fuel cells degradation prediction based on transfer learning," Energy, Elsevier, vol. 293(C).
    3. Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
    4. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    5. Liu, Zhongyong & Sun, Yuning & Tang, Xiawei & Mao, Lei, 2024. "Enabling unsupervised fault diagnosis of proton exchange membrane fuel cell stack: Knowledge transfer from single-cell to stack," Applied Energy, Elsevier, vol. 360(C).
    6. Kim, Kyunghyun & Kim, Jaeyeon & Choi, Heesoo & Kwon, Obeen & Jang, Yujae & Ryu, Sangbong & Lee, Heeyun & Shim, Kyuhwan & Park, Taehyun & Cha, Suk Won, 2023. "Pre-diagnosis of flooding and drying in proton exchange membrane fuel cells by bagging ensemble deep learning models using long short-term memory and convolutional neural networks," Energy, Elsevier, vol. 266(C).
    7. Oh, Hwanyeong & Lee, Won-Yong & Won, Jinyeon & Kim, Minjin & Choi, Yoon-Young & Han, Soo-Bin, 2020. "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
    2. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    3. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    4. Wang, Xin & Atkin, Jason & Bozhko, Serhiy, 2025. "Fault-tolerant hierarchical energy management system for an electrical power system on more-electric aircraft," Applied Energy, Elsevier, vol. 379(C).
    5. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    6. Li, Jianwei & Wang, Tianci & Yang, Qingqing & Tian, Zhonghao & Lv, Hong & Wang, Xuechao & Shen, Jun, 2025. "A safe region method to quantitatively evaluate the safety of fuel cell operating states," Applied Energy, Elsevier, vol. 377(PA).
    7. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    8. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    9. Huang, Ruike & Zhang, Xuexia & Dong, Sidi & Huang, Lei & Liao, Hongbo & Li, Yuan, 2024. "A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation," Renewable Energy, Elsevier, vol. 237(PC).
    10. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    11. Lü, Xueqin & Meng, Ruidong & Deng, Ruiyu & Long, Liyuan & Wu, Yinbo, 2022. "Energy economy optimization and comprehensive performance improvement for PEMFC/LIB hybrid system based on hierarchical optimization," Renewable Energy, Elsevier, vol. 193(C), pages 1132-1149.
    12. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.
    13. Lu, Dagang & Yi, Fengyan & Hu, Donghai & Li, Jianwei & Yang, Qingqing & Wang, Jing, 2023. "Online optimization of energy management strategy for FCV control parameters considering dual power source lifespan decay synergy," Applied Energy, Elsevier, vol. 348(C).
    14. Sun, Zhendong & Wang, Yujie & Chen, Zonghai & Li, Xiyun, 2020. "Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles," Applied Energy, Elsevier, vol. 267(C).
    15. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Teresa Donateo, 2023. "Semi-Empirical Models for Stack and Balance of Plant in Closed-Cathode Fuel Cell Systems for Aviation," Energies, MDPI, vol. 16(22), pages 1-40, November.
    17. Junyi Chen & Huijun Ran & Ziyang Chen & Trevor Hocksun Kwan & Qinghe Yao, 2025. "Online Pre-Diagnosis of Multiple Faults in Proton Exchange Membrane Fuel Cells by Convolutional Neural Network Based Bi-Directional Long Short-Term Memory Parallel Model with Attention Mechanism," Energies, MDPI, vol. 18(10), pages 1-17, May.
    18. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    19. Deng, Shutong & Zhang, Jun & Zhang, Caizhi & Luo, Mengzhu & Ni, Meng & Li, Yu & Zeng, Tao, 2022. "Prediction and optimization of gas distribution quality for high-temperature PEMFC based on data-driven surrogate model," Applied Energy, Elsevier, vol. 327(C).
    20. Soualhi, Moncef & El Koujok, Mohamed & Nguyen, Khanh T.P. & Medjaher, Kamal & Ragab, Ahmed & Ghezzaz, Hakim & Amazouz, Mouloud & Ouali, Mohamed-Salah, 2021. "Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:386:y:2025:i:c:s0306261925003058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.