IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224001877.html
   My bibliography  Save this article

Research on vehicle speed prediction model based on traffic flow information fusion

Author

Listed:
  • Hu, Zhiyuan
  • Yang, Rui
  • Fang, Liang
  • Wang, Zhuo
  • Zhao, Yinghua

Abstract

Resource scarcity, global climate change and environmental pollution are increasingly constraining the development of the automotive industry. China proposes to reach the carbon peak by 2030; to reach the carbon neutral double carbon target by 2060 and gradually promote a green and low-carbon transition in energy development. The development of new energy vehicles is an important approach for China to realize its energy structure transformation in the automobile industry. HEV, as a transitional product of automobile energy transformation, has the advantages of both internal combustion engine vehicles and electric vehicles, which can improve the fuel efficiency and the emission problem of internal combustion engine vehicles and the range is longer compared to electric vehicles. One of the important aspects of HEV research is the design of whole vehicle energy management strategy based on the model predictions. Particularly, model-based predictive control is one of the mainstream energy management strategies nowadays, and its optimization effect is mainly subject to the model prediction accuracy. In this study, we constructed the ITS environment of a local roadway through simulation, compared the speed prediction effects of different speed prediction methods in different prediction time domains, and fused the historical information of vehicles (speed of the vehicle in front, distance, signal status, distance, and remaining time). It is found that N-BEATS is more effective in predicting vehicle speed in different prediction time domains, and the prediction accuracy of the speed prediction model is effectively improved after its fusion of multivariate information.

Suggested Citation

  • Hu, Zhiyuan & Yang, Rui & Fang, Liang & Wang, Zhuo & Zhao, Yinghua, 2024. "Research on vehicle speed prediction model based on traffic flow information fusion," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001877
    DOI: 10.1016/j.energy.2024.130416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224001877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.