IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v658y2025ics0378437124008112.html
   My bibliography  Save this article

Markov chain-based capacity modeling for mixed traffic flow with bi-class connected vehicle platoons on minor road at priority intersections

Author

Listed:
  • Qin, Yanyan
  • Luo, Qinzhong
  • Wang, Hao

Abstract

Priority intersections, as one of typical unsignalized intersections, are devised to allocate the right of way to vehicles on major road, requiring vehicles on minor road waiting for a safe gap before passing through intersections. Thus, capacity of minor road plays an important role in determining the efficiency of priority intersections. With connectivity features, both connected automated vehicles (CAVs) and connected vehicles (CVs) have the potential to form platoons which are referred to as connected vehicle platoons, thereby improving capacity of mixed traffic with regular vehicles (RVs) on minor road at priority intersections. This paper proposes a capacity model for mixed traffic with the aforementioned bi-class connected vehicle platoons at priority intersections. To begin with, eleven states of following headway in mixed traffic flow were defined to mathematically derive the capacity modeling based on Markov chain theory. The proposed capacity model incorporated the average occupation time and lost time of vehicles on minor road at priority intersections. We then presented an analytical framework of optimization designs for platoon operations of both CAVs and CVs, including the maximum platoon size and platooning willingness, to achieve capacity improvement in mixed traffic scenarios. Finally, numerical experiments were conducted to verify the effectiveness of the proposed model. The results demonstrate that the proposed model can be used for quantitatively calculating mixed traffic capacity on minor road at priority intersections, under the influence of both CAV/CV maximum platoon size and platooning willingness. Following the analytical framework, optimal values of CAV/CV maximum platoon size and platooning willingness can be determined under varying penetration rates for mixed traffic capacity improvement.

Suggested Citation

  • Qin, Yanyan & Luo, Qinzhong & Wang, Hao, 2025. "Markov chain-based capacity modeling for mixed traffic flow with bi-class connected vehicle platoons on minor road at priority intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
  • Handle: RePEc:eee:phsmap:v:658:y:2025:i:c:s0378437124008112
    DOI: 10.1016/j.physa.2024.130301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124008112
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanyan Qin & Hao Wang & Daiheng Ni, 2021. "Lighthill-Whitham-Richards Model for Traffic Flow Mixed with Cooperative Adaptive Cruise Control Vehicles," Transportation Science, INFORMS, vol. 55(4), pages 883-907, July.
    2. Qin, Yanyan & Luo, Qinzhong & Xiao, Tengfei & He, Zhengbing, 2024. "Modeling the mixed traffic capacity of minor roads at a priority intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    3. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    4. Pengfei Liu & Wei (David) Fan, 2020. "Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(3), pages 279-292, April.
    5. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    6. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    7. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    8. Zhou, Zhi & Li, Linheng & Qu, Xu & Ran, Bin, 2024. "PACC: A platoon-based adaptive cruise control strategy based on leader-following information topology to mitigate traffic oscillations under CAV environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    9. Huang, Xin & Wang, Huan & Li, Yongfu & Huang, Longwang & Zhao, Hang, 2024. "Reservation-based traffic signal control for mixed traffic flow at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    10. Yu, Chunhui & Sun, Weili & Liu, Henry X. & Yang, Xiaoguang, 2019. "Managing connected and automated vehicles at isolated intersections: From reservation- to optimization-based methods," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 416-435.
    11. Xing, Yingying & Zhou, Huiyu & Han, Xiao & Zhang, Meng & Lu, Jian, 2022. "What influences vulnerable road users’ perceptions of autonomous vehicles? A comparative analysis of the 2017 and 2019 Pittsburgh surveys," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    12. Chen, Danjue & Ahn, Soyoung & Chitturi, Madhav & Noyce, David A., 2017. "Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 196-221.
    13. Qin, Yanyan & Xie, Lulu & Gong, Siyuan & Ding, Fan & Tang, Honghui, 2024. "An optimal lane configuration management scheme for a mixed traffic freeway with connected vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    14. Liu, Qingling & Xu, Xiaowen, 2024. "A platoon-based eco-driving control mechanism for low-density traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    15. Jiang, Chenming & Yin, Shicong & Yao, Zhihong & He, Junliang & Jiang, Rui & Jiang, Yu, 2024. "Safety evaluation of mixed traffic flow with truck platoons equipped with (cooperative) adaptive cruise control, stochastic human-driven cars and trucks on port freeways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    2. Zhang, Xiang & Sun, Haojie & Pei, Xiaoyang & Guan, Linghui & Wang, Zihao, 2024. "Evolution of technology investment and development of robotaxi services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    3. Zong, Ting & Li, Yan & Qin, Yanyan, 2024. "Enhancing stability of traffic flow mixed with connected automated vehicles via enabling partial regular vehicles with vehicle-to-vehicle communication function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    4. Qin, Yanyan & Luo, Qinzhong & Xiao, Tengfei & He, Zhengbing, 2024. "Modeling the mixed traffic capacity of minor roads at a priority intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    5. Qin, Yanyan & Xie, Lulu & Gong, Siyuan & Ding, Fan & Tang, Honghui, 2024. "An optimal lane configuration management scheme for a mixed traffic freeway with connected vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    6. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Zheng, Yuan & Yao, Zhihong & Xu, Yueru & Qu, Xu & Ran, Bin, 2024. "Lane management for mixed traffic flow on roadways considering the car-following behaviors of human-driven vehicles to follow connected and automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    8. Li, Xin & Wang, Tianqi & Xu, Weihan & Li, Huaiyue & Yuan, Yun, 2024. "Modelling connected and autonomous bus on dynamics of mixed traffic in partially connected and automated traffic environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    9. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    10. Wu, Guohong & Wu, Jiaming & Zheng, Shiteng & Jiang, Rui, 2024. "Managing merging from a dedicated CAV lane into a conventional lane considering the stochasticity of connected human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    11. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    12. Dong, Haoxuan & Shi, Junzhe & Zhuang, Weichao & Li, Zhaojian & Song, Ziyou, 2025. "Analyzing the impact of mixed vehicle platoon formations on vehicle energy and traffic efficiencies," Applied Energy, Elsevier, vol. 377(PA).
    13. Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    14. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    15. Chowdhury, Tufayel & Vaughan, James & Roorda, Matthew J., 2024. "Modeling impacts of freight automated vehicles in the Greater Toronto and Hamilton Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    16. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    17. Liu, Peng & Xu, Shu-Xian & Ong, Ghim Ping & Tian, Qiong & Ma, Shoufeng, 2021. "Effect of autonomous vehicles on travel and urban characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 128-148.
    18. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    19. Chen, Shuiwang & Hu, Lu & Yao, Zhihong & Zhu, Juanxiu & Zhao, Bin & Jiang, Yangsheng, 2022. "Efficient and environmentally friendly operation of intermittent dedicated lanes for connected autonomous vehicles in mixed traffic environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    20. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:658:y:2025:i:c:s0378437124008112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.