IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v634y2024ics0378437123009998.html
   My bibliography  Save this article

An optimal lane configuration management scheme for a mixed traffic freeway with connected vehicle platoons

Author

Listed:
  • Qin, Yanyan
  • Xie, Lulu
  • Gong, Siyuan
  • Ding, Fan
  • Tang, Honghui

Abstract

With the emergent connectivity, both Connected Automated Vehicles (CAVs) and Connected Regular Vehicles (CRVs) have the capability to form platoons that can be defined as connected vehicle platoons, thereby enhancing the capacity of freeways. To fully leverage the innovations of CAVs and CRVs in improving traffic flow mobility, dedicated lanes with distinct vehicle type authority are proposed. Existing studies suggest that the mobility performance of a road section with different lane authority configurations is significantly influenced by the compatibility between lane configurations and traffic flow characteristics, such as penetration rate of connected vehicles (i.e. CAVs and CRVs) and arrival rate per lane. Motivated by the above research need, this paper proposes an optimal lane configuration management scheme to maximize discharge flow in a two-lane freeway mixed traffic environment. To begin with, four lane configuration strategies with different distinct vehicle type authorities are introduced. Analytical models are provided to mathematically derive the discharge flow of given four lane configuration strategies, according to the investigation of single-lane capacity and upstream arriving traffic demand. By configuration strategy-based analytical models, the optimal lane configuration management scheme is proposed. We then conduct numerical analysis to validate the effectiveness of the proposed analytical models of lane configuration strategies under various penetration rates of CAVs and CRVs. As the result indicated, several important factors have significant impacts on the optimal lane configuration management scheme, such as traffic demand and its allocations on each lane, and CAVs/CRVs penetration.

Suggested Citation

  • Qin, Yanyan & Xie, Lulu & Gong, Siyuan & Ding, Fan & Tang, Honghui, 2024. "An optimal lane configuration management scheme for a mixed traffic freeway with connected vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
  • Handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123009998
    DOI: 10.1016/j.physa.2023.129444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123009998
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123009998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.