IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223030359.html
   My bibliography  Save this article

Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study

Author

Listed:
  • Liang, Yan
  • Yang, Haibin
  • Wang, Huilong
  • Bao, Xiaohua
  • Cui, Hongzhi

Abstract

Phase change material (PCM)-based cold energy storage systems (CESS) offer a promising solution for improving energy efficiency and cost-effectiveness in air conditioning systems. However, their limited heat transfer efficiency hinders widespread adoption. This study focuses on investigating the impact of key factors, including plate size, arrangement, and fin structure, on the charging and discharging processes of a PCM-based CES tank. The findings highlight the significant influence of PCM plate configuration and inlet flow rate on heat transfer performance in the storage tank. Notably, reducing the height of PCM plate from 50 mm to 10 mm while maintaining a consistent volume resulted in a remarkable reduction in charging/discharging time by 84.6 % and 87.9 %, respectively. Response surface models were developed to establish correlations between the number of fins, plate height, and inlet flow rate with the charging/discharging time of PCM plates, enabling the identification of the optimal solution for achieving faster charging/discharging times. Moreover, a case study in a data center retrofit project was conducted to evaluate the thermal performance of different PCM plate configurations. Despite the higher initial investment, the optimized solution demonstrated a higher effective utilization rate of the PCM-based CESS, leading to substantial energy savings and reduced carbon emissions.

Suggested Citation

  • Liang, Yan & Yang, Haibin & Wang, Huilong & Bao, Xiaohua & Cui, Hongzhi, 2024. "Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030359
    DOI: 10.1016/j.energy.2023.129641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.